Geometry Effects on Critical Heat Flux for Subcooled Convective Boiling From an Array of Heated Elements

[+] Author and Article Information
W. R. McGillis, V. P. Carey, B. D. Strom

Department of Mechanical Engineering, University of California, Berkeley, CA 94720

J. Heat Transfer 113(2), 463-471 (May 01, 1991) (9 pages) doi:10.1115/1.2910584 History: Received January 26, 1990; Revised October 18, 1990; Online May 23, 2008


The critical heat flux (CHF) condition was experimentally determined for subcooled flow boiling from an array of simulated microelectronic devices on one wall of a vertical rectangular passage. A test apparatus was used in these experiments that allowed visual observation of the boiling process while simultaneously measuring the heat flux and surface temperature for ten heat-dissipating elements. Using R-113 as the coolant, the CHF condition was determined for flush and slightly protruding heated elements. As expected, the element farthest downstream was found to reach the CHF condition first in all cases. For both the flush and slightly protruding elements, the trends in the CHF data are similar to those previously reported for subcooled flow boiling on an isolated element. At moderate flow velocities, the critical heat flux predicted by a proposed correlation for subcooled flow boiling from a single element was found to agree well with the multiple-flush-element data if the local fluid subcooling at the last element was used in the correlation. At lower velocities, however, the data deviated from the predicted values. The data for slightly protruding elements were also found to deviate from those for the flush elements at higher velocities. The apparent physical reasons for these trends are discussed in detail.

Copyright © 1991 by The American Society of Mechanical Engineers
Your Session has timed out. Please sign back in to continue.






Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related Journal Articles
Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In