0
RESEARCH PAPERS

An Experimental Study of Laminar Film Condensation With Stefan Number Greater Than Unity

[+] Author and Article Information
R. L. Mahajan, D. A. Dickinson

AT&T-Bell Laboratories, Princeton, NJ 08540

T. Y. Chu

Sandia Laboratories, Albuquerque, NM 87185

J. Heat Transfer 113(2), 472-478 (May 01, 1991) (7 pages) doi:10.1115/1.2910585 History: Received March 19, 1990; Revised August 31, 1990; Online May 23, 2008

Abstract

Experimental laminar condensation heat transfer data are reported for fluids with Stefan number up to 3.5. The fluid used is a member of a family of fluorinated fluids, which have been used extensively in the electronics industry for soldering, cooling, and testing applications. Experiments were performed by suddenly immersing cold copper spheres in the saturated vapor of this fluid, and heat transfer rates were calculated using the quasi-steady temperature response of the spheres. In these experiments, the difference between saturation and wall temperature varied from 0.5° C to 190°C. Over this range of temperature difference, the condensate properties vary significantly; viscosity of the condensate varies by a factor of nearly 50. Corrections for the temperature-dependent properties of the condensate therefore were incorporated in calculating the Nusselt number based on the average heat transfer coefficient. The results are discussed in light of past experimental data and theory for Stefan number less than unity. To the knowledge of the authors, this is the first reported study of condensation heat transfer examining the effects of Stefan number greater than unity.

Copyright © 1991 by The American Society of Mechanical Engineers
Your Session has timed out. Please sign back in to continue.

References

Figures

Tables

Errata

Discussions

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related Journal Articles
Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In