0
RESEARCH PAPERS

Axial Transport Effects on Natural Convection Inside of an Open-Ended Annulus

[+] Author and Article Information
K. Vafai, J. Ettefagh

Department of Mechanical Engineering, The Ohio State University, Columbus, OH 43210

J. Heat Transfer 113(3), 627-634 (Aug 01, 1991) (8 pages) doi:10.1115/1.2910611 History: Received June 06, 1990; Revised January 12, 1991; Online May 23, 2008

Abstract

The present work centers around a numerical three-dimensional transient investigation of the effects of axial convection on flow and temperature fields inside an open-ended annulus. The transient behavior of the flow field through the formation of a three-dimensional flow field and its subsequent effect on the temperature distribution at different axial locations within the annulus were analyzed by both finite difference and finite element methods. The results show that the axial convection has a distinctly different influence on the temperature and velocity fields. It is found that in the midportion of the annulus a two-dimensional assumption with respect to the temperature distribution can lead to satisfactory results for Ra<10,000. However, such an assumption is improper with respect to the flow field. Furthermore, it is shown that generally the errors for a two-dimensional assumption in the midportion of the annulus are less at earlier times (t<50Δt) during the transient development of the flow and temperature fields.

Copyright © 1991 by The American Society of Mechanical Engineers
Your Session has timed out. Please sign back in to continue.

References

Figures

Tables

Errata

Discussions

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related Journal Articles
Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In