0
RESEARCH PAPERS

Solidification of an Aqueous Salt Solution in a Circular Cylinder

[+] Author and Article Information
A. S. Burns, L. A. Stickler, W. E. Stewart

Energy Research Laboratory, Truman Campus, University of Missouri—Kansas City, Independence, MO 64050

J. Heat Transfer 114(1), 30-33 (Feb 01, 1992) (4 pages) doi:10.1115/1.2911263 History: Received September 12, 1990; Revised January 28, 1991; Online May 23, 2008

Abstract

The situation of one-dimensional, transient inward solidification of a binary solution in a circular cylinder is studied numerically. The solution is assumed to be of a hypoeutectic initial concentration and to be initially at a superheated temperature above its initial melting point temperature. The boundary temperature of the cylinder is below that of its heterogeneous nucleation temperature and no supercooling occurs. The boundary temperatures and final solution concentrations are assumed to be above and below, respectively, the eutectic point of the solution. The finite difference numerical model predicts the time for the radial formation of the mush type of ice to reach the center of the cylinder and the time for the entire cylinder to reach the cylinder boundary temperature, based upon the assumptions of negligible diffusion and convection of solute during solidification. The results reveal that closure times are significantly increased for the solutions compared to pure water due to decreased conductivity of the mush compared to ice.

Copyright © 1992 by The American Society of Mechanical Engineers
Your Session has timed out. Please sign back in to continue.

References

Figures

Tables

Errata

Discussions

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related Journal Articles
Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In