Transient Convective Heat Transfer in Planar Stagnation Flows With Time-Varying Surface Heat Flux and Temperature

[+] Author and Article Information
D. A. Zumbrunnen

Thermal/Fluids Laboratory, Department of Mechanical Engineering, Clemson University, Clemson, SC 29634-0921

J. Heat Transfer 114(1), 85-93 (Feb 01, 1992) (9 pages) doi:10.1115/1.2911272 History: Received October 11, 1990; Revised July 01, 1991; Online May 23, 2008


Impinging flows are used in a variety of applications where effective and localized heat transfer is mandated by short residence times or by space constraints, as in cooling materials moving along a conveyor or removing heat dissipated within microelectronic circuitry. A wide selection of heat transfer correlations is available for steady-state conditions. However, instantaneous heat transfer coefficients can differ significantly from steady-state values when temporal variations occur in the surface heat flux or surface temperature. Under these conditions, the temperatures of fluid layers near the surface are affected preferentially due to their proximity to the temporal variation. A theoretical model is formulated to assess the importance of a time-varying surface heat flux or temperature on convective heat transfer in a steady, planar stagnation flow. A governing equation for the transient heat transfer response is formulated analytically from the boundary layer equations for momentum and energy conservation in the fluid. Numerical solutions to the governing equation are determined for ramp and sinusoidal changes in the surface heat flux or temperature. Results indicate that the time response is chiefly governed by the velocity gradient in the free stream and to a lesser extent by the Prandtl number. Departures from steady-state Nusselt numbers are larger for more rapid transients and smaller or comparable in size to the magnitude of the imposed variation at the surface.

Copyright © 1992 by The American Society of Mechanical Engineers
Your Session has timed out. Please sign back in to continue.






Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related Journal Articles
Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In