Natural Convection Heat Transfer From a Plate in a Semicircular Enclosure

[+] Author and Article Information
G. A. Moore, K. G. T. Hollands

Centre for Solar Thermal Engineering, Department of Mechanical Engineering, University of Waterloo, Waterloo, Canada

J. Heat Transfer 114(1), 121-126 (Feb 01, 1992) (6 pages) doi:10.1115/1.2911236 History: Received February 12, 1991; Revised August 19, 1991; Online May 23, 2008


In the subject geometry, a long thin plate at uniform temperature is contained coaxially and symmetrically in a long semicircular trough closed at the top and having a uniform but different temperature. Heat flows across the air-filled region between the two by both natural convection and gaseous conduction. The problem of characterizing the free convective component of this heat transfer—that is, the component caused by bulk fluid motion—is treated experimentally by using a heat balance technique, with the measurements being repeated at different pressures, in order to cover a wide Rayleigh number range, from Ra ≈ 10 to Ra ≈ 108 . Nusselt number versus Rayleigh number plots are presented for each of several combinations of plate-to-trough spacing and tilt angle, and the plots are correlated by equations. The problem of characterizing the conductive component is treated by numerically solving the steady diffusion equation in the air-filled region, and the results are correlated as a function of the spacing and the plate thickness.

Copyright © 1992 by The American Society of Mechanical Engineers
Your Session has timed out. Please sign back in to continue.






Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related Journal Articles
Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In