0
RESEARCH PAPERS

Turbulent Heat Transfer Augmentation Using Microscale Disturbances Inside the Viscous Sublayer

[+] Author and Article Information
H. Kozlu, B. B. Mikic, A. T. Patera

Massachusetts Institute of Technology, Department of Mechanical Engineering, Cambridge, MA 02139

J. Heat Transfer 114(2), 348-353 (May 01, 1992) (6 pages) doi:10.1115/1.2911282 History: Received November 08, 1989; Revised July 11, 1991; Online May 23, 2008

Abstract

We report here on an experimental study of heat transfer augmentation in turbulent flow. Enhancement strategies employed in this investigation are based on the near-wall mixing processes induced in the sublayer through appropriate wall and near-wall streamwise-periodic disturbances. Experiments are performed in a low-turbulence wind-tunnel with a high-aspect-ratio rectangular channel having either (a) two-dimensional periodic microgrooves on the wall, or (b) two-dimensional microcylinders placed in the immediate vicinity of the wall. It is found that micro-disturbances placed inside the sublayer induce favorable heat-transport augmentation with respect to the smooth-wall case, in that near-analogous momentum and heat transfer behavior are preserved; a roughly commensurate increase in heat and momentum transport is termed favorable in that it leads to a reduction in the pumping power penalty at fixed heat removal rate. The study shows that this favorable performance of microcylinder-equipped channel flows is achieved for microcylinders placed inside y+ ≃20, implying a dependence of the optimal position and size on Reynolds number. For microgrooved channel flows, favorable augmentation is obtained for a wider range of Reynolds numbers; however, optimal enhancement still requires a matching of geometric perturbation with the sublayer scale.

Copyright © 1992 by The American Society of Mechanical Engineers
Your Session has timed out. Please sign back in to continue.

References

Figures

Tables

Errata

Discussions

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related Journal Articles
Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In