0
RESEARCH PAPERS

Local Heat Transfer in a Rotating Serpentine Flow Passage

[+] Author and Article Information
Wen-Jei Yang, Nengli Zhang, Jeff Chiou

Department of Mechanical Engineering and Applied Mechanics, University of Michigan, Ann Arbor, MI 48109

J. Heat Transfer 114(2), 354-361 (May 01, 1992) (8 pages) doi:10.1115/1.2911283 History: Received August 01, 1990; Revised October 01, 1991; Online May 23, 2008

Abstract

An experimental study is performed on the internal cooling of a rotating serpentine flow passage of square cross section with throughflow. The test section is not proceeded by a hydrodynamic calming region, i.e., a leading arm, and is rotated at low Rossby numbers. The local heat transfer coefficients along the flow passage, including the leading wall, trailing wall, and sidewalls, are determined together with the circumferentially averaged values. The Reynolds, Rossby, and rotating Rayleigh numbers are varied to determine their effects on heat transfer performance. It is disclosed that heat transfer augmentation is significant at all sharp turns due to the presence of strong secondary flow. The rotational effect is very obvious and complicated in the local heat transfer performance but it is very minor on the average heat transfer performance. The throughflow rate plays an important role on the heat transfer performance. The results may serve as a baseline for comparison with the results from a model with a leading arm to determine the effects of a hydrodynamic calming section on the heat transfer performance of a rotating serpentine flow passage.

Copyright © 1992 by The American Society of Mechanical Engineers
Your Session has timed out. Please sign back in to continue.

References

Figures

Tables

Errata

Discussions

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related Journal Articles
Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In