0
RESEARCH PAPERS

Heat Transfer Analysis of Local Evaporative Turbulent Falling Liquid Films

[+] Author and Article Information
N. M. Al-Najem, K. Y. Ezuddin, M. A. Darwish

Mechanical Engineering Dept., Kuwait University, Safat, 13060, Kuwait

J. Heat Transfer 114(3), 688-694 (Aug 01, 1992) (7 pages) doi:10.1115/1.2911335 History: Received May 20, 1990; Revised October 08, 1991; Online May 23, 2008

Abstract

A theoretical study has been conducted for evaporative heating of turbulent free-falling liquid films inside long vertical tubes. The methodology of the present work is based on splitting the energy equation into homogeneous and nonhomogeneous problems. Solving these simple problems yields a rapidly converging solution, which is convenient for computational purposes. The eigenvalues associated with the homogeneous problem can be computed efficiently, without missing any one of them, by the sign-count algorithm. A new correlation for the local evaporative heat transfer coefficient along the tube length is developed over wide ranges of Reynolds and Prandtl numbers. Furthermore, the average heat transfer coefficient is correlated as a function of Reynolds and Prandtl numbers as well as the interfacial shear stress. A correlation for the heat transfer coefficient in the fully developed region is also presented in terms of Reynolds and Prandtl numbers. Typical numerical results showed excellent agreement of the present approach with the available data in the literature. Moreover, a parametric study is made to illustrate the general effects of various variables on the velocity and temperature profiles.

Copyright © 1992 by The American Society of Mechanical Engineers
Your Session has timed out. Please sign back in to continue.

References

Figures

Tables

Errata

Discussions

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related Journal Articles
Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In