A Three-Dimensional Analysis of Particle Deposition for the Modified Chemical Vapor Deposition (MCVD) Process

[+] Author and Article Information
Y. T. Lin, M. Choi, R. Greif

Department of Mechanical Engineering, University of California at Berkeley, Berkeley, CA 94720

J. Heat Transfer 114(3), 735-742 (Aug 01, 1992) (8 pages) doi:10.1115/1.2911342 History: Received February 01, 1991; Revised January 01, 1992; Online May 23, 2008


A study has been made of the deposition of particles that occurs during the modified chemical vapor deposition (MCVD) process. The three-dimensional conservation equations of mass, momentum, and energy have been solved numerically for forced flow, including the effects of buoyancy and variable properties in a heated, rotating tube. The motion of the particles that are formed is determined from the combined effects resulting from thermophoresis and the forced and secondary flows. The effects of torch speed, rotational speed, inlet flow rate, tube radius, and maximum surface temperature on deposition are studied. In a horizontal tube, buoyancy results in circumferentially nonuniform temperature and velocity fields and particle deposition. The effect of tube rotation greatly reduces the nonuniformity of particle deposition in the circumferential direction. The process is chemical-reaction limited at larger flow rates and particle-transport limited at smaller flow rates. The vertical tube geometry has also been studied because its symmetric configuration results in uniform particle deposition in the circumferential direction. The “upward” flow condition results in a large overall deposition efficiency, but this is also accompanied by a large “tapered entry length.”

Copyright © 1992 by The American Society of Mechanical Engineers
Your Session has timed out. Please sign back in to continue.






Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related Journal Articles
Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In