0
RESEARCH PAPERS: Heat Conduction With Solidification

A New Method for Thermal Analysis of Die Casting

[+] Author and Article Information
M. R. Barone, D. A. Caulk

Engineering Mechanics Department, General Motors Research, Warren, MI 48090-9055

J. Heat Transfer 115(2), 284-293 (May 01, 1993) (10 pages) doi:10.1115/1.2910678 History: Received May 01, 1992; Revised September 01, 1992; Online May 23, 2008

Abstract

A new approach is developed for solving the initial value, steady periodic heat conduction problem in steady-state die casting. Three characteristics found in nearly all die casting processes are exploited directly: The casting is thin compared with its overall size, its thermal conductivity is high compared with that of the mold, and the cycle time is short compared with the start-up transient of the process. Under these conditions, it is reasonable to neglect the transverse temperature gradients in the casting and assume that all die temperatures below a certain depth from the cavity surface are independent of time. The transient die temperatures near the cavity surface are represented by a polynomial expansion in the depth coordinate, with time-varying coefficients determined by a Galerkin method. This leads to a set of ordinary differential equations on the cavity surface, which govern the transient interaction between the casting and the die. From the time-averaged solution of these equations, special conditions are derived that relate the transient solution near the cavity surface to the three-dimensional steady solution in the die interior. With these conditions, the steady temperatures in the bulk of the die can be determined independently of the explicit surface transients. This reduces the effort of solving a complex transient heat conduction problem to little more than finding a steady solution alone. The overall approach provides a general analytical tool, which is capable of predicting complex thermal interactions in large multicomponent dies.

Copyright © 1993 by The American Society of Mechanical Engineers
Your Session has timed out. Please sign back in to continue.

References

Figures

Tables

Errata

Discussions

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related Journal Articles
Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In