0
RESEARCH PAPERS: Natural and Mixed Convection

Natural Convective Heat Transfer in a Divided Vertical Channel: Part I—Numerical Study

[+] Author and Article Information
D. Naylor

Department of Mechanical Engineering, Queen’s University, Kingston, Ontario, Canada

J. D. Tarasuk

The University of Western Ontario, London, Ontario, Canada

J. Heat Transfer 115(2), 377-387 (May 01, 1993) (11 pages) doi:10.1115/1.2910689 History: Received January 01, 1992; Revised September 01, 1992; Online May 23, 2008

Abstract

This is a two-part study of two-dimensional laminar natural convection heat transfer in a divided vertical channel. The divided channel consists of an isothermal dividing plate located on the center line of a vertical channel formed by two isothermal walls. The study examines the effect of Rayleigh number, plate-to-channel length ratio, vertical plate position, and plate thickness on the heat transfer rate from the channel walls, the dividing plate, and the channel as a whole. In Part I, solutions to both the full elliptic and parabolic forms of the Navier–Stokes and energy equations are obtained for Prandtl number Pr = 0.7 (air). Positioning the plate at the bottom of the channel was found to give the highest average Nusselt numbers for the plate and channel. Dividing plate average Nusselt numbers as much as two times higher than the isolated plate Nusselt number were predicted numerically. Experimental measurements and data correlations for the divided channel are presented in Part II of this paper.

Copyright © 1993 by The American Society of Mechanical Engineers
Your Session has timed out. Please sign back in to continue.

References

Figures

Tables

Errata

Discussions

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related Journal Articles
Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In