0
RESEARCH PAPERS: Transport in Porous Media

A Numerical Investigation of Premixed Combustion Within Porous Inert Media

[+] Author and Article Information
P.-F. Hsu, J. R. Howell, R. D. Matthews

Department of Mechanical Engineering, The University of Texas at Austin, Austin, TX 78712

J. Heat Transfer 115(3), 744-750 (Aug 01, 1993) (7 pages) doi:10.1115/1.2910746 History: Received August 01, 1991; Revised January 01, 1993; Online May 23, 2008

Abstract

A numerical investigation of premixed combustion within a highly porous inert medium is reported. Specifically, results of a numerical model using detailed chemical kinetics and energy exchange between the flowing gas and the porous solid are presented. The current formulation differs from prior models of this type of combustion in that multistep kinetics is used and a better description of the thermophysical properties of the solid is applied in the present model. It was found that the preheating effect increases strongly with increasing convective heat transfer and with increasing effective thermal conductivity of the solid. The convective heat transfer is expected to increase with increasing number of cells per unit length of porous matrix but the absorption coefficient decreases with increasing cell size and decreasing cell density. Numerical simulations using baseline properties indicate that the lean limit can be extended to an equivalence ratio of about 0.36 for a methane–air flame and that the peak flame temperature is generally higher than the adiabatic flame temperature. The latter effect is predicted to be more pronounced at lower equivalence ratios.

Copyright © 1993 by The American Society of Mechanical Engineers
Your Session has timed out. Please sign back in to continue.

References

Figures

Tables

Errata

Discussions

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related Journal Articles
Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In