0
RESEARCH PAPERS: Heat Conduction

Thermal Response of Rolling Components Under Mixed Boundary Conditions: An Analytical Approach

[+] Author and Article Information
P. Ulysse, M. M. Khonsari

Department of Mechanical Engineering, University of Pittsburgh, Pittsburgh, PA 15261

J. Heat Transfer 115(4), 857-865 (Nov 01, 1993) (9 pages) doi:10.1115/1.2911380 History: Received April 01, 1992; Revised December 01, 1992; Online May 23, 2008

Abstract

An analytical solution for the steady-state temperature distribution in a cylinder undergoing uniform heating and nonuniform cooling is presented. The method of solution is a Fourier integral transform technique. The analysis shows that the Neumann series resulting from an integral equation can be well represented by a first-order approximation when the Peclet number is large. Furthermore, it is shown that the ratio of the Biot number to the square root of the Peclet number of the cooling zones is found to play an important role in governing the thermal response of the cylinder surface. The predicted results for the circumferential temperature distribution are compared to published experimental measurements for hot rolling and also existing analytical solutions for special cases. The agreement is found to be very good. By an appropriate superposition technique, the analysis presented may be easily extended to various heat sources and convective cooling zones at different locations of the cylinder surface.

Copyright © 1993 by The American Society of Mechanical Engineers
Your Session has timed out. Please sign back in to continue.

References

Figures

Tables

Errata

Discussions

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related Journal Articles
Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In