0
RESEARCH PAPERS: Forced Convection

Influence of Mainstream Turbulence on Heat Transfer Coefficients From a Gas Turbine Blade

[+] Author and Article Information
L. Zhang, J.-C. Han

Turbine Heat Transfer Laboratory, Department of Mechanical Engineering, Texas A&M University, College Station, TX 77843-3123

J. Heat Transfer 116(4), 896-903 (Nov 01, 1994) (8 pages) doi:10.1115/1.2911464 History: Received March 01, 1993; Revised March 01, 1994; Online May 23, 2008

Abstract

The influence of mainstream turbulence on surface heat transfer coefficients of a gas turbine blade was studied. A five-blade linear cascade in a low-speed wind tunnel facility was used in the experiments. The mainstream Reynolds numbers were 100,000, 200,000, and 300,000 based on the cascade inlet velocity and blade chord length. The grid-generated turbulence intensities at the cascade inlet were varied between 2.8 and 17 percent. A hot-wire anemometer system measured turbulence intensities, mean and time-dependent velocities at the cascade inlet, outlet, and several locations in the middle of the flow passage. A thin-foil thermocouple instrumented blade determined the surface heat transfer coefficients. The results show that the mainstream turbulence promotes earlier and broader boundary layer transition, causes higher heat transfer coefficients on the suction surface, and significantly enhances the heat transfer coefficient on the pressure surface. The onset of transition on the suction surface boundary layer moves forward with increased mainstream turbulence intensity and Reynolds number. The heat transfer coefficient augmentations and peak values on the suction and pressure surfaces are affected by the mainstream turbulence and Reynolds number.

Copyright © 1994 by The American Society of Mechanical Engineers
Your Session has timed out. Please sign back in to continue.

References

Figures

Tables

Errata

Discussions

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related Journal Articles
Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In