0
RESEARCH PAPERS: Heat Conduction

Heat Generation and Transport in Submicron Semiconductor Devices

[+] Author and Article Information
K. Fushinobu, A. Majumdar

Department of Mechanical and Environmental Engineering, University of California, Santa Barbara, Santa Barbara, CA 93106

K. Hijikata

Tokyo Institute of Technology, Department of Mechano-Aerospace Engineering, Tokyo, Japan

J. Heat Transfer 117(1), 25-31 (Feb 01, 1995) (7 pages) doi:10.1115/1.2822317 History: Received January 01, 1993; Revised February 01, 1994; Online December 05, 2007

Abstract

The reduction of semiconductor device size to the submicrometer range leads to unique electrical and thermal phenomena. The presence of high electric fields (order of 107 V/m) energizes the electrons and throws them far from equilibrium with the lattice. This makes heat generation a nonequilibrium process. For gallium arsenide (GaAs), energy is first transferred from the energized electrons to optical phonons due to strong polar coupling. Since optical phonons do not conduct heat, they must transfer their energy to acoustic phonons for lattice heat conduction. Based on the two-step mechanism with corresponding time scales, a new model is developed to study the process of nonequilibrium heat generation and transport in a GaAs metal semiconductor field effect transistor (MESFET) with a gate length of 0.2 μm. When 3 V is applied to the device, the electron temperature rise is predicted to be more than 1000 K. The effect of lattice heating on electrical characteristics of the device shows that the current is reduced due to decrease in electron mobility. The package thermal conductance is observed to have strong effects on the transient response of the device.

Copyright © 1995 by The American Society of Mechanical Engineers
Your Session has timed out. Please sign back in to continue.

References

Figures

Tables

Errata

Discussions

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related Journal Articles
Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In