RESEARCH PAPERS: 1991 Max Jakob Memorial Award Paper

Onset and Development of Natural Convection Above a Suddenly Heated Horizontal Surface

[+] Author and Article Information
R. J. Goldstein, R. J. Volino

Department of Mechanical Engineering, University of Minnesota, Minneapolis, MN 55455

J. Heat Transfer 117(4), 808-821 (Nov 01, 1995) (14 pages) doi:10.1115/1.2836296 History: Received October 01, 1994; Revised April 01, 1995; Online January 23, 2008


The onset and development of flow in a thick horizontal layer subject to a near-constant flux heating from below has been studied experimentally. The overall heat-flux-based Rayleigh number, Ra*, ranges from 2 × 108 to 7 × 1010 . Flow visualization shows the growth and breakdown of a conduction layer adjacent to the heated surface. Convection is characterized by the release of warm meandering plumes and thermals from a boundary layer. The planform of convection at the heated surface begins with a pattern of small spots suggestive of Bénard cells. Some of these cells expand, forming a larger cell pattern. This continues until a quasi-steady state is reached in which the former cell boundaries form a slowly moving pattern of warm lines on the heated surface. The lines are believed to be the source of the plumes and thermals. Quantitatively, the onset of convection occurs at a constant (critical) Rayleigh number based on the conduction layer thickness, Raδ . Based on the first observation of fluid motion, this critical Rayleigh number is approximately 1300. Based on the heated surface temperature the critical Rayleigh number is 2700. The nondimensional wavenumber associated with the observed instabilities at the onset of convection is about 2.2.

Copyright © 1995 by The American Society of Mechanical Engineers
Your Session has timed out. Please sign back in to continue.






Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related Journal Articles
Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In