0
RESEARCH PAPERS: Boiling and Condensation

Nonlinear Aspects of High Heat Flux Nucleate Boiling Heat Transfer

[+] Author and Article Information
P. Sadasivan, C. Unal, R. Nelson

Nuclear Systems and Design Analysis Group, Los Alamos National Laboratory, Technology and Safety Assessment Division, Los Alamos, NM 87545

J. Heat Transfer 117(4), 981-989 (Nov 01, 1995) (9 pages) doi:10.1115/1.2836320 History: Received February 01, 1995; Revised April 01, 1995; Online January 23, 2008

Abstract

This paper deals with potential nonlinear effects in nucleate boiling systems as a result of the behavior of individual nucleation sites on the heater surface. This requires detailed microscopic modeling of the surface. A computational model has been formulated for this purpose. The model addresses the three-dimensional transient conduction heat transfer process within the problem domain comprised of the macrolayer and heater. Hydrodynamic effects are represented through boundary conditions. Individual nucleation sites are activated or deactivated depending on the thermal conditions that prevail at the site. The model has been used to examine the behavior of sites on a realistic heater surface. The results indicate that significant spatial and temporal temperature variations can occur on the surface, and that thermal interactions among sites can result in some sites operating intermittently. Surface-averaged temperatures show nonlinear period-doubling behavior. A chaotic case was found. Qualitative comparisons are made to both local instantaneous temperature measurements and recent experiments that showed chaotic behavior. We believe that such nonlinear behavior is one of the reasons that mechanistic predictive capabilities for the boiling process have remained elusive.

Copyright © 1995 by The American Society of Mechanical Engineers
Your Session has timed out. Please sign back in to continue.

References

Figures

Tables

Errata

Discussions

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related Journal Articles
Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In