RESEARCH PAPERS: Phase-Change Heat Transfer

Infiltration and Solidification/Remelting of a Pure Metal in a Two-Dimensional Porous Preform

[+] Author and Article Information
X. Tong, J. A. Khan

Department of Mechanical Engineering, University of South Carolina, Columbia, SC 29208

J. Heat Transfer 118(1), 173-180 (Feb 01, 1996) (8 pages) doi:10.1115/1.2824031 History: Received December 01, 1994; Revised October 01, 1995; Online December 05, 2007


Infiltration and solidification/remelting of a pure metal in a two-dimensional porous preform are modeled numerically. It is assumed that under the action of constant applied pressure, the flow of liquid metal through the preform is within the range of the validity of Darcy’s Law. The distinguishing feature of this flow and heat transfer problem is the existence of two moving fronts: the infiltration front and the remelting front. The governing momentum and energy equations are nondimensionalized and cast into a Body-Fitted Coordinates (BFC) systems to deal with the transient and irregular physical domains. The dimensionless groups that govern the infiltration and remelting processes are: the dimensionless pressure difference, the dimensionless melting temperature, the preform permeability ratio, porosity, and the geometric parameters (inlet gate size, and the preform aspect ratio). A computational code has been developed to solve the problem and is verified by using the available published results. The key parameters describing the physical phenomena, i.e., the infiltration front and remelting front evolution, the total infiltration time, and the remelting region size, are presented as a function of the operating variables for two different aspect ratios. The results can be used to optimize the infiltration processing of Metal–Matrix Composites and other related manufacturing processes.

Copyright © 1996 by The American Society of Mechanical Engineers
Your Session has timed out. Please sign back in to continue.






Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related Journal Articles
Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In