The local variation in the heat transfer coefficient for an axisymmetric, turbulent, submerged liquid jet impinging on a nonuniform boundary of a phase-change material is measured with an ultrasonic measurement technique. The time required for an acoustic wave to traverse the phase-change material is measured with an ultrasonic transducer and the time data are converted into local thickness profiles of the phase-change material via knowledge of the longitudinal acoustic velocity in the material. An energy balance at the melt interface between the impinging jet and the phase-change material is used in conjunction with the local thickness profile data to determine the local variation in the heat transfer coefficient. The phase-change material is originally flat, but its shape changes with time as the heated jet melts a complex shape into its surface. The heat transfer rate over the surface of the melting interface is shown to vary with time as a result of the changing shape of the phase change material. A deep cavity is melted into the solid at the stagnation point and secondary cavities are melted into the interface for certain jet flow rates and surface spacings between the jet nozzle and the melt interface. When secondary cavities are produced, secondary peaks in the local heat transfer coefficient are observed. The heat transfer data are formulated into two Nusselt number correlations that are functions of the dimensionless time, dimensionless radius, dimensionless jet-to-surface spacing, and jet Reynolds number. One correlation is formulated for all locations along the surface of the phase-change material except the stagnation point, and a second correlation is valid at the stagnation point.