0
RESEARCH PAPERS: Properties and Property Measurements

Refractive Indices at Visible Wavelengths of Soot Emitted From Buoyant Turbulent Diffusion Flames

[+] Author and Article Information
J.-S. Wu, S. S. Krishnan, G. M. Faeth

Department of Aerospace Engineering, The University of Michigan, Ann Arbor, MI 48109-2118

J. Heat Transfer 119(2), 230-237 (May 01, 1997) (8 pages) doi:10.1115/1.2824213 History: Received February 19, 1996; Revised November 14, 1996; Online December 05, 2007

Abstract

Measurements of the optical properties of soot, emphasizing refractive indices, are reported for visible wavelengths (350–800 nm). The experiments considered soot in the fuel-lean (overfire) region of buoyant turbulent diffusion flames in the long residence time regime where soot properties are relatively independent of position in the overfire region and residence time. Flames fueled with acetylene, propylene, ethylene, and propane that were burning in still air provided a range of soot physical and structure properties. Measurements included soot composition, density, structure, gravimetric volume fraction, and scattering and absorption properties. These data were analyzed to find soot fractal dimensions, refractive indices, refractive index functions, and dimensionless extinction coefficients assuming Rayleigh-Debye-Gans scattering for polydisperse mass fractal aggregates (RDG-PFA theory). RDG-PFA theory was successfully evaluated using measured scattering properties. Soot fractal dimensions were independent of both fuel type and wavelength, yielding a mean value of 1.77 with a standard deviation of 0.04. Refractive indices were independent of fuel type within experimental uncertainties and were in reasonably good agreement with earlier measurements for soot in the fuel-lean region of diffusion flames due to Dalzell and Sarofim (1969). Dimensionless extinction coefficients were independent of both fuel type and wavelength, yielding a mean value of 5.1 with a standard deviation of 0.5, which is lower than earlier measurements for reasons that still must be explained.

Copyright © 1997 by The American Society of Mechanical Engineers
Your Session has timed out. Please sign back in to continue.

References

Figures

Tables

Errata

Discussions

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related Journal Articles
Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In