0
RESEARCH PAPERS: Radiative Transfer

Radiative Transfer in Pulsed-Laser-lnduced Plasma

[+] Author and Article Information
X. Xu, K. H. Song

School of Mechanical Engineering, Purdue University, 1288 Mechanical Engineering Building, West Lafayette, IN 47907

J. Heat Transfer 119(3), 502-508 (Aug 01, 1997) (7 pages) doi:10.1115/1.2824124 History: Received April 29, 1996; Revised November 14, 1996; Online December 05, 2007

Abstract

When a high-power pulsed laser interacts with materials, a plasma layer containing micrometer-size particles is formed above the target surface. The laser induced plasma changes the energy coupling mechanism between the laser beam and the target. This work investigates the radiative heat transfer process in the excimer laser generated plasma layer on the Ni specimen, in the laser fluence range between 1.5 and 5 J/cm2 . Novel diagnostic techniques are developed to measure transient transmission and scattering of the thin plasma layer within the duration of the laser pulse. Based on the measurement results, radiative heat transfer analysis is performed to evaluate the radiative properties of the plasma layer, including the optical depth, the absorption coefficient, the single scattering phase function, and the scattering size parameters. Knowledge of the radiative properties of the laser induced plasma helps to understand the energy transfer process during laser-materials interaction. Further, this work demonstrates the feasibility of using the transient scattering measurement for in situ monitoring of the size of the laser ejected particles.

Copyright © 1997 by The American Society of Mechanical Engineers
Your Session has timed out. Please sign back in to continue.

References

Figures

Tables

Errata

Discussions

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related Journal Articles
Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In