RESEARCH PAPERS: Applications of Heat Transfer

Heat Transfer in an Electromagnetic Bearing

[+] Author and Article Information
G. F. Jones, C. Nataraj

Department of Mechanical Engineering, Villanova University, 800 Lancaster Avenue, Villanova, PA 19085-1681

J. Heat Transfer 119(3), 611-616 (Aug 01, 1997) (6 pages) doi:10.1115/1.2824149 History: Received February 06, 1996; Revised February 14, 1997; Online December 05, 2007


An exact solution for two-dimensional, full transient, and steady periodic heat conduction in an electromagnetic bearing is obtained. Classical methods are used to obtain an analytical expression for the temperature distribution that arises from power dissipated in the pole windings. Among the key findings is the need for cooling in the immediate neighborhood of the bearing support due to the relatively large thermal resistance of the supporting structure. The results presented prove the existence of large temperature gradients in the bearing in both the radial and circumferential directions. This demands the need for a fine mesh when performing the commonly used nodal-network thermal analysis. Conditions are described under which the temperature distribution is independent of the frequency of the time-dependent current supplied to the poles. For these cases the problem reduces to steady state, and the solution is given. A peak circumferential temperature difference of about 55°C in the bearing is possible under certain conditions that are discussed. Attention to proper thermal design is critical to reduce the dimensional distortion of the bearing caused by thermal expansion. The effects of thermal expansion can range from catastrophic, should the shaft come in contact with the bearing, to an undesirable change in the force and dynamic control characteristics caused by a variation in the critical shaft-to-bearing clearance, which is of the order of a fraction of a millimeter.

Copyright © 1997 by The American Society of Mechanical Engineers
Your Session has timed out. Please sign back in to continue.






Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related Journal Articles
Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In