0
RESEARCH PAPERS: Forced Convection

Numerical Study of Shear-Induced Heating in High-Speed Nozzle Flow of Liquid Monopropellant

[+] Author and Article Information
X. Shi, O. M. Knio, J. Katz

Department of Mechanical Engineering, The Johns Hopkins University, Baltimore, MD 21218-2686

J. Heat Transfer 120(1), 58-64 (Feb 01, 1998) (7 pages) doi:10.1115/1.2830065 History: Received February 03, 1997; Revised August 08, 1997; Online January 07, 2008

Abstract

A numerical study is performed which focuses on peak temperatures experienced by a liquid monopropellant during high-speed injection in a small-diameter nozzle. Attention is focused on short-duration injection during which the nozzle wall boundary layer is predominantly laminar. An unsteady ID analysis of the temperature distribution associated with sudden fluid acceleration over a flat insulated boundary is first conducted. Expressions are provided which relate the normalized peak wall temperature to the prevailing Eckert and Prandtl numbers. Results reveal a quadratic dependence of the normalized wall temperature on impulse velocity, and a nonlinear variation with Prandtl number. Next, simulation of high-speed flow in an axisymmetric nozzle is performed. The numerical schemes are based on finite-difference discretization of a vorticity-based formulation of the mass, momentum, and energy conservation equations. Implementation of the numerical schemes to flow of LP 1846 in a 4 mm diameter nozzle indicates that preignition is likely to occur for velocities higher than 200 m/s. The effects of wall heat transfer and temperature-dependent properties are also discussed.

Copyright © 1998 by The American Society of Mechanical Engineers
Your Session has timed out. Please sign back in to continue.

References

Figures

Tables

Errata

Discussions

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related Journal Articles
Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In