0
RESEARCH PAPERS: Natural and Mixed Convection

Natural Convection of a Liquid Metal in Vertical Circular Cylinders Heated Locally From the Side

[+] Author and Article Information
R. Selver, Y. Kamotani, S. Ostrach

Department of Mechanical and Aerospace Engineering, Case Western Reserve University, 10900 Euclid Avenue, Cleveland, OH 44106-7222

J. Heat Transfer 120(1), 108-114 (Feb 01, 1998) (7 pages) doi:10.1115/1.2830033 History: Received April 11, 1997; Revised November 17, 1997; Online January 07, 2008

Abstract

An experimental study is made of natural convection in gallium melts enclosed by vertical circular cylinders with localized circumferential heating. Heating is done in an axial band at the mid-height, and both ends of the cylinder are cooled. In the present study, the cylinder aspect (Ar = height/diameter) ratio ranges from 2 to 10, and the Rayleigh number (Ra) ranges from 9.0 × 104 to 3.0 × 107 . The Prandtl number is 0.021. Temperature measurements are made at six axial levels around the circumference of the cylinder to study thermal convection in the melt. A numerical analysis is also conducted to supplement the experimental information. When Ra is small, the melt is in steady toroidal motion. Above a certain Ra, the flow becomes nonaxisymmetric as a result of a thermal instability, in the case of Ar larger than 3. With increasing Ra, the motion becomes oscillatory, mainly in the upper half. When Ar is smaller than 3, the toroidal flow becomes nonaxisymmetric and oscillatory at the same time beyond a certain Ra. The conditions for the appearance of oscillations and the oscillation frequencies are investigated in detail.

Copyright © 1998 by The American Society of Mechanical Engineers
Your Session has timed out. Please sign back in to continue.

References

Figures

Tables

Errata

Discussions

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related Journal Articles
Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In