0
RESEARCH PAPERS: Boiling and Condensation

Steady-State Subcooled Nucleate Boiling on a Downward-Facing Hemispherical Surface

[+] Author and Article Information
K. H. Haddad, F. B. Cheung

Department of Mechanical Engineering, The Pennsylvania State University, University Park, PA 16802

J. Heat Transfer 120(2), 365-370 (May 01, 1998) (6 pages) doi:10.1115/1.2824258 History: Received August 16, 1996; Revised January 14, 1998; Online December 05, 2007

Abstract

Steady-state nucleate boiling heat transfer experiments in saturated and subcooled water were conducted. The heating surface was a 0.305 m hemispherical aluminum vessel heated from the inside with water boiling on the outside. It was found that subcooling had very little effect on the nucleate boiling curve in the high heat flux regime where latent heat transport dominated. On the other hand, a relatively large effect of subcooling was observed in the low-heat-flux regime where sensible heat transport was important. Photographic records of the boiling phenomenon and the bubble dynamics indicated that in the high-heat-flux regime, boiling in the bottom center region of the vessel was cyclic in nature with a liquid heating phase, a bubble nucleation and growth phase, a bubble coalescence phase, and a large vapor mass ejection phase. At the same heat flux level, the size of the vapor masses was found to decrease from the bottom center toward the upper edge of the vessel, which was consistent with the increase observed in the critical heat flux in the flow direction along the curved heating surface.

Copyright © 1998 by The American Society of Mechanical Engineers
Your Session has timed out. Please sign back in to continue.

References

Figures

Tables

Errata

Discussions

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related Journal Articles
Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In