RESEARCH PAPERS: Heat Exchangers

Impact of Channel Geometry on Two-Phase Flow Heat Transfer Characteristics of Refrigerants in Microchannel Heat Exchangers

[+] Author and Article Information
T. S. Ravigururajan

Department of Mechanical Engineering, Wichita State University, Wichita, KS 67260

J. Heat Transfer 120(2), 485-491 (May 01, 1998) (7 pages) doi:10.1115/1.2824274 History: Received September 13, 1996; Revised February 23, 1998; Online December 05, 2007


Microchannel surfaces, often machined to 20 to 1000 μm in width and depth, are employed in high-heat-flux applications. However, a large number of variables, control the two-phase flow heat transfer coefficient. The pressure, the surface heat flux, and the mass flux significantly affect the thermal transport. Experiments were conducted on a setup that was built for testing microchannel heat exchanges. The parameters considered in the study are power input: 20 to 300 W, volume flow rate: 35 to 300 ml/min, quality: 0 to 0.5, inlet subcooling: 5 to 15°C. The results indicate that the heat transfer coefficient and pressure drop are functions of the flow quality, the mass flux, and, of course, the heat flux and the related surface superheat. The heat transfer coefficient decreases from a value of 12,000 W/m2 -K to 9000, W/m2 -K at 80°C, when the wall superheat is increased from 10 to 80°C. The coefficient decreases by 30 percent when the exit vapor quality is increased from 0.01 to 0.65.

Copyright © 1998 by The American Society of Mechanical Engineers
Your Session has timed out. Please sign back in to continue.





Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related Journal Articles
Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In