0
RESEARCH PAPERS: Featured Section—Heat Transfer in Manufacturing

Transient Elastic and Viscoelastic Thermal Stresses During Laser Drilling of Ceramics

[+] Author and Article Information
M. F. Modest

Department of Mechanical Engineering, The Pennsylvania State University, University Park, PA 16802

J. Heat Transfer 120(4), 892-898 (Nov 01, 1998) (7 pages) doi:10.1115/1.2825908 History: Received December 30, 1997; Revised June 29, 1998; Online December 05, 2007

Abstract

Lasers appear to be particularly well suited to drill and shape hard and brittle ceramics, which are almost impossible to netshape to tight tolerances, and are presently machined in industry only by diamond grinding. Unfortunately, the large, focussed heat fluxes that allow the ready melting and ablation of material, also result in large localized thermal stresses within the narrow heat-affected zone, which can lead to microcracks, significant decrease in bending strength, and even catastrophic failure. In order to assess the where, when, and what stresses occur during laser drilling, that are responsible for cracks and decrease in strength, elastic and viscoelastic stress models have been incorporated into our two-dimensional drilling code. The code is able to predict temporal temperature fields as well as the receding solid surface during CW or pulsed laser drilling. Using the resulting drill geometry and temperature fields as well as the receding solid surface during CW of pulsed laser drilling. Using the resulting drill geometry and temperature field, elastic stresses as well as viscoelastic stresses are calculated as they develop and decay during the drilling process. The viscosity of the ceramic is treated as temperature-dependent, limiting viscoelastic effects to a thin layer near the ablation front where the ceramic has softened.

Copyright © 1998 by The American Society of Mechanical Engineers
Your Session has timed out. Please sign back in to continue.

References

Figures

Tables

Errata

Discussions

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related Journal Articles
Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In