RESEARCH PAPERS: Analytical and Experimental Techniques

Two Constructal Routes to Minimal Heat Flow Resistance via Greater Internal Complexity

[+] Author and Article Information
A. Bejan, N. Dan

Department of Mechanical Engineering and Materials Science, Duke University, Durham, NC 27708-0300

J. Heat Transfer 121(1), 6-14 (Feb 01, 1999) (9 pages) doi:10.1115/1.2825968 History: Received January 14, 1998; Revised August 20, 1998; Online December 05, 2007


This paper shows that the geometry of the heat flow path between a volume and one point can be optimized in two fundamentally different ways. In the “growth” method of the original constructal theory the structure is optimized starting from the smallest volume element of fixed size. Growth, or optimal numbers of constituents assembled into larger volumes, is one route to resistance minimization. In the “design” method the overall volume is fixed, and the designer works “inward” by optimizing the internal features of the heat flow path. The design method is new. It is shown analytically that the two methods produce comparable geometric results in which the high-conductivity channels form constructal tree networks, and where the low-conductivity material fills the interstices. For simplicity, it is assumed that the high-conductivity channels and their tributaries make 90-deg angles. In both approaches, the overall resistance decreases as the internal complexity of the conductive composite increases. In the growth method the number of constituents in each assembly can be optimized. In the design method, some of the constituent numbers cannot be optimized: these numbers assume the roles of weak parameters. The growth method is the simplest, and provides a useful approximation of the design and performance that can be achieved using the design method. Numerical solutions of the volume-to-point optimization problem confirm the results obtained analytically, and show that the geometric features of the optimal design are robust.

Copyright © 1999 by The American Society of Mechanical Engineers
Your Session has timed out. Please sign back in to continue.





Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related Journal Articles
Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In