Flat Miniature Heat Pipes With Micro Capillary Grooves

[+] Author and Article Information
R. Hopkins, A. Faghri, D. Khrustalev

Department of Mechanical Engineering, University of Connecticut, Storrs, CT 06269-3139

J. Heat Transfer 121(1), 102-109 (Feb 01, 1999) (8 pages) doi:10.1115/1.2825922 History: Received January 23, 1997; Revised August 20, 1998; Online December 05, 2007


Flat miniature heat pipes (FMHP’s) are shown to be very promising in the cooling of electronic component systems. This investigation presents a detailed experimental and theoretical analysis on maximum heat transfer capabilities of two copper-water FMHP’s with diagonal trapezoidal micro capillary grooves and one copper-water FMHP with axial rectangular micro capillary grooves. Maximum heat flux on the evaporator wall of the 120-mm long axial grooved heat pipe, with a vapor channel cross-sectional area of approximately 1.5 × 12 mm2 and rectangular grooves of dimensions 0.20 mm wide by 0.42 mm deep, exceeded 90 W/cm2 in the horizontal orientation and 150 W/cm2 in the vertical orientation. Theoretical prediction of the capillary limitation in the horizontal orientation agreed reasonably well with the experimental data.

Copyright © 1999 by The American Society of Mechanical Engineers
Your Session has timed out. Please sign back in to continue.





Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related Journal Articles
Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In