RESEARCH PAPERS: Multimode Heat Transfer

Heat Transfer in Discretely Heated Side-Vented Compact Enclosures by Combined Conduction, Natural Convection, and Radiation

[+] Author and Article Information
E. Yu, Y. K. Joshi

Department of Mechanical Engineering and CALCE Electronic Products and Systems Consortium, University of Maryland, College Park, MD 20742

J. Heat Transfer 121(4), 1002-1010 (Nov 01, 1999) (9 pages) doi:10.1115/1.2826050 History: Received September 08, 1998; Revised May 05, 1999; Online December 05, 2007


A three-dimensional investigation of combined conduction, natural convection, and radiation in a side-vented compact enclosure is carried out. The focus of the study is on the enhancement of overall heat transfer through the opening, and the roles of the various modes in achieving it. A discrete heat source, flush-mounted centrally on a vertical substrate, is placed in the enclosure with a single rectangular opening on the opposite vertical wall. Steady-state computations are carried out for Rayleigh numbers, Ra, at 2.6 × 106 and 2.0 × 107 . The results show that radiation plays a significant role in the overall heat transfer, and the radiative transport is even more pronounced for lower Ra. It is found that natural convection is weakened by radiation, however, contrary to the existing studies on top vented enclosures, the overall heat transfer is enhanced when radiation is included in the computations. Flow recirculation by radiative heating of enclosure walls is predicted, and is also observed experimentally. Heat spreading in the substrate is found to effect both convection and radiation. The numerical solutions on an extended computational domain are found in good agreement with the experimental data, when the conjugate effects are accounted for.

Copyright © 1999 by The American Society of Mechanical Engineers
Your Session has timed out. Please sign back in to continue.






Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related Journal Articles
Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In