0
RESEARCH PAPERS: Heat Exchangers

Performance of Dehumidifying Heat Exchangers With and Without Wetting Coatings

[+] Author and Article Information
K. Hong

Daimler Chrysler Corporation, 14250 Plymouth Road, Detroit, MI 48227

R. L. Webb

Department of Mechanical Engineering, The Pennsylvania State University, University Park, PA 16802

J. Heat Transfer 121(4), 1018-1026 (Nov 01, 1999) (9 pages) doi:10.1115/1.2826052 History: Received June 16, 1998; Revised April 01, 1999; Online December 05, 2007

Abstract

Limited previous work has shown that use of special hydrophilic coatings will provide lower air pressure drop in finned tube heat exchangers operated under dehumidifying conditions. However, no detailed work has been reported on the effect of different coating types, or different fin surface geometries on the wet pressure drop. In this study, wind tunnel tests were performed on three different fin geometries (wavy, lanced, and louver) under wet and dry conditions. All dehumidification tests were done for fully wet surface conditions. For each geometry, the tests were performed on uncoated and coated heat exchangers. For all three fin geometries, the wet-to-dry pressure drop ratio was 1.2 at 2.5 m/s frontal air velocity. The coatings have no influence on the wet or dry heat transfer coefficient. However, the wet surface heat transfer coefficient was 10 to 30 percent less than the dry heat transfer coefficient, depending on the particular fin geometry. The effect of the fin press oil on wet pressure drop was also studied. If the oil contains a surfactant, good temporary wetting can be obtained on an uncoated surface; however, this effect is quickly degraded as the oil is washed from the surface during wet operation. This work also provides a critical assessment of data reduction methods for wet surface operation, including calculation of the fin efficiency.

Copyright © 1999 by The American Society of Mechanical Engineers
Your Session has timed out. Please sign back in to continue.

References

Figures

Tables

Errata

Discussions

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related Journal Articles
Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In