0
TECHNICAL PAPERS: Microscale Heat Transfer

Molecular Dynamics Study of Solid Thin-Film Thermal Conductivity

[+] Author and Article Information
J. R. Lukes, D. Y. Li

Department of Mechanical Engineering, University of California, Berkeley, CA 94720-1740

X.-G. Liang

Department of Engineering Mechanics, Tsinghua University, Beijing 100084, Chinae-mail: liangxg@tsinghua.edu.cn

C.-L. Tien

University of California, Berkeley, CA 94720-1740e-mail: nancie@uclink4.berkeley.edu

J. Heat Transfer 122(3), 536-543 (Mar 01, 2000) (8 pages) doi:10.1115/1.1288405 History: Received February 28, 1999; Revised March 01, 2000
Copyright © 2000 by ASME
Your Session has timed out. Please sign back in to continue.

References

Osinski,  M., 1991, “Vertical-Cavity Surface-Emitting Semiconductor Lasers: Present Status and Future Prospects,” Proc. SPIE, 1418, pp. 2–24.
Inoue,  R., Tanaka,  H., and Nakanishi,  K., 1996, “Molecular Dynamics Simulation Study of the Anomalous Thermal Conductivity of Clathrate Hydrates,” J. Chem. Phys., 104, pp. 9569–9577.
Mountain,  R. D., and MacDonald,  R. A., 1983, “Thermal Conductivity of Crystals: A Molecular-Dynamics Study of Heat Flow in a Two-Dimensional Crystal,” Phys. Rev. B, 28, pp. 3022–3025.
Kaburaki,  H., and Machida,  M., 1993, “Thermal Conductivity in One-Dimensional Lattices of Fermi-Pasta-Ulam Type,” Phys. Lett. A, 181, pp. 85–90.
Kotake,  S., and Wakuri,  S., 1994, “Molecular Dynamics Study of Heat Conduction in Solid Materials,” JSME Int. J. Ser. B, 37, pp. 103–108.
Volz,  S., and Chen,  G., 1999, “Molecular Dynamics Simulation of Thermal Conductivity of Silicon Nanowires,” Appl. Phys. Lett., 75, pp. 2056–2058.
Allen, M. P., and Tildesley, D. J., 1987, Computer Simulation of Liquids, Clarendon Press, Oxford, UK.
Car, R., 1996, “Modeling Materials by Ab-Initio Molecular Dynamics,” Quantum Theory of Real Materials, Chelikowsky, J. R., and Louie, S. G., eds., Kluwer Academic, Dordrecht, The Netherlands, pp. 23–37.
Kristensen,  W. D., Jensen,  E. J., and Cotterill,  R. M. J., 1974, “Thermodynamics of Small Clusters of Atoms: A Molecular Dynamics Simulation,” J. Chem. Phys., 60, pp. 4161–4169.
Chou,  F. C., Lukes,  J. R., Liang,  X. G., Takahashi,  K., and Tien,  C. L., 1999, “Molecular Dynamics in Microscale Thermophysical Engineering,” Ann. Rev. Heat Transf., 10, pp. 141–176.
Swope,  W. C., Andersen,  H. C., Berens,  P. H., and Wilson,  K. R., 1982, “A Computer Simulation Method for the Calculation of Equilibrium Constants for the Formation of Physical Clusters of Molecules: Application to Small Water Clusters,” J. Chem. Phys., 76, pp. 637–649.
Ikeshoji,  T., and Hafskjold,  B., 1994, “Non-equilibrium Molecular Dynamics Calculation of Heat Conduction in Liquid and through Liquid-Gas Interface,” Mol. Phys., 81, pp. 251–261.
Jacucci,  G., and Rahman,  A., 1984, “Comparing the Efficiency of Metropolis Monte Carlo and Molecular Dynamics Methods for Configuration Space Sampling,” Nuovo Cimento, D4, pp. 341–356.
Dobbs,  E. R., and Jones,  G. O., 1957, “Theory and Properties of Solid Argon,” Rep. Prog. Phys., 20, pp. 516–564.
Dugdale,  J. S., and MacDonald,  D. K. C., 1955, “Lattice Thermal Conductivity,” Phys. Rev., 98, pp. 1751–1752.
CRC Handbook of Chemistry and Physics, 1996, CRC Press, Boca Raton, FL.
Volz,  S., Saulnier,  J.-B., Lallemand,  M., Perrin,  B., Depondt,  P., and Mareschal,  M., 1996, “Transient Fourier-law Deviation by Molecular Dynamics in Solid Argon,” Phys. Rev. B, 54, pp. 340–347.
Press, W. H., Teukolsky, S. A., Vetterling, W. T., and Flannery, B. P., 1992, Numerical Recipes in FORTRAN: The Art of Scientific Computing, 2nd Ed., Cambridge University Press, Cambridge, UK.
Irving,  J. H., and Kirkwood,  J. G., 1950, “The Statistical Mechanical Theory of Transport Processes. IV. The Equations of Hydrodynamics,” J. Chem. Phys., 18, pp. 817–829.
Lukes, J. R., 2000, “Molecular Dynamics Simulation of Thermal Conduction in Thin Films and Nanoporous Materials,” Ph.D. thesis, University of California, Berkeley, CA, in progress.
Tenenbaum,  A., Ciccotti,  G., and Gallico,  R., 1982, “Stationary Nonequilibrium States by Molecular Dynamics,” Phys. Rev. A, 25, pp. 2778–2787.
Hafskjold,  B., and Ratkje,  S. K., 1995, “Criteria for Local Equilibrium in a System with Transport of Heat and Mass,” J. Stat. Phys., 78, pp. 463–494.
Touloukian, Y. S., Liley, P. E., and Saxena, S. C., eds., 1970, Thermal Conductivity: Nonmetallic Liquids and Gases, IFI/Plenum, New York.
Haile, J. M., 1992, Molecular Dynamics Simulation: Elementary Methods, Wiley, New York.
Kaburaki,  H., Li,  J., and Yip,  S., 1999, “Thermal Conductivity of Solid Argon by Classical Molecular Dynamics,” Mater. Res. Soc. Symp. Proc., 538, pp. 503–508.
Casimir,  H. B. G., 1938, “Note on the Conduction of Heat in Crystals,” Physica, 5, pp. 495–500.
Siegel, R., and Howell, J. R., 1981, Thermal Radiation Heat Transfer, 2nd Ed., Hemisphere, Washington, DC.
Majumdar,  A., 1993, “Microscale Heat Conduction in Dielectric Thin Films,” ASME J. Heat Transfer, 115, pp. 7–16.
Ciccotti,  G., and Tenenbaum,  A., 1980, “Canonical Ensemble and Nonequilibrium States by Molecular Dynamics,” J. Stat. Phys., 23, pp. 767–772.
Flik,  M. I., Choi,  B. I., and Goodson,  K. E., 1992, “Heat Transfer Regimes in Microstructures,” ASME J. Heat Transfer, 114, pp. 666–674.
Kittel, C., 1996, Introduction to Solid State Physics, 7th Ed., Wiley, New York.

Figures

Grahic Jump Location
Simulation cell schematic drawings: (a) bulk thermal conductivity, (b) perpendicular thermal conductivity  
Grahic Jump Location
Temperature in each x-plane of a five regular plane simulation for fixed and free boundaries
Grahic Jump Location
Velocity distributions at T=0.5 for various cross sections and sampled time steps: (a) 4×4, 10,000; (b) 6×6, 10,000; (c) 4×4, 30,000; (d) 6×6, 30,000
Grahic Jump Location
Calculated and experimental bulk thermal conductivities at T=0.3 and 0.5 versus number of atoms
Grahic Jump Location
Planck spectral distribution. Shaded areas indicate the fraction of total phonon emissive power allowed by the molecular dynamics simulation. (a) and (b) illustrate the effect of temperature, and (c) and (d) illustrate the effect of domain size.
Grahic Jump Location
Calculated, bulk experimental, and equation of photon radiative transfer (EPRT) thermal conductivities versus film thickness at various temperatures
Grahic Jump Location
Effect of number of unit cells per bath on thermal conductivity
Grahic Jump Location
Effect of cross section on thermal conductivity

Tables

Errata

Discussions

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related Journal Articles
Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In