0
TECHNICAL PAPERS: Heat Transfer in Manufacturing

Numerical Determination of Thermal Contact Resistance for Nonisothermal Forging Processes

[+] Author and Article Information
A.-S. Marchand, M. Raynaud

INSA de Lyon, Centre de Thermique de Lyon, ESA CNRS 5008, Batiment 404, 20, avenue Albert Einstein, 69621 Villeurbanne Cedex, France

J. Heat Transfer 122(4), 776-784 (Feb 15, 2000) (9 pages) doi:10.1115/1.1287168 History: Received February 25, 1999; Revised February 15, 2000
Copyright © 2000 by ASME
Your Session has timed out. Please sign back in to continue.

References

Kellow,  M. A., Bramley,  A. N., and Bannister,  F. K., 1969, “The Measurement of Temperatures in Forging Dies,” Int. J. Mach. Tool Des. Res., 9, pp. 239–260.
Baillet, L., and Boyer, J. C., 1994, “A Friction Model for Closed-Die Forging F.E.M. Simulation,” Metal Forming Process Simulation in Industry, Vol. 1, Int. Com. Thugensorganisation Münchengladbach, Baden-Baden, Germany, pp. 132–145.
Jinka, G. K., Fourment, L., and Bellet, M., 1995, “Numerical Simulation of Hot Powder Forging of Connecting Rod,” Simulation of Materials Processing: Theory, Methods and Applications, Shen and Dawson, eds. pp. 833–838.
Fenech,  H., and Rohsenow,  W. M., 1963, “Prediction of the Thermal Conductance of Metallic Surfaces in Contact,” ASME J. Heat Transfer, 85, pp. 15–24.
Fletcher,  L. S., 1988, “Recent Developments in Contact Conductance Heat Transfer,” ASME J. Heat Transfer, 110, pp. 1059–1070.
Bardon,  J. P., 1994, “Bases physiques des conditions de contact thermique imparfait entre milieux en glissement relatif,” Rev. Gen. Therm., 386, pp. 85–91.
Laraqi,  N., 1997, “Velocity and Relative Contact Size Effects on the Thermal Constriction Resistance in Sliding Solids,” ASME J. Heat Transfer, 119, No. 1, pp. 173–177.
Lambert,  M. A., and Fletcher,  L. S., 1997, “Review of Models for Thermal Contact Conductance of Metals,” J. Thermophys. Heat Transfer, 11, No. 2, pp. 129–140.
Dadras,  P., and Wells,  W. R., 1984, “Heat Transfer Aspects of Nonisothermal Axisymmetric Upset Forging,” J. Eng. Ind., 106, pp. 187–195.
Burte,  P. R., Yong-Taek,  I. M., Altan,  T., and Semiatin,  S. L., 1990, “Measurement and Analysis of Heat Transfer and Friction During Hot Forging,” J. Eng. Ind., 112, pp. 332–339.
Vinod,  K. J., 1990, “Determination of Heat Transfer Coefficient for Forging Applications,” J. Mater. Shap. Technol., 8, No. 3, pp. 193–202.
Dean,  T. A., and Silva,  T. M., 1979, “Die Temperatures During Production Drop Forging,” J. Eng. Ind., 101, pp. 385–390.
Lenard,  J. G., and Davies,  M. E., 1995, “The Distribution of Temperature in a Hot/Cold Die Set: The Effect of the Pressure, Temperature and Material,” J. Eng. Mater. Technol., 117, pp. 220–227.
Malinowski,  Z., Lenard,  J. G., and Davies,  M. E., 1994, “A Study of Heat Transfer Coefficient as a Function of Temperature and Pressure,” J. Eng. Mater. Technol., 41, pp. 125–142.
Goizet, V., Bourouga, B., and Bardon, J. P., 1998, “Experimental Study of the Thermal Boundary Condition at the Workpiece-Die Interface During Hot Forging,” Proceedings of 11th IHTC, Vol. 5, Kyongju, Korea, Aug. 23–28, Taylor and Francis, London, pp. 15–20.
Mikic,  B. B., 1974, “Thermal Contact Conductance, Theoretical Considerations” Int. J. Heat Mass Transf., 17, No. 22, pp. 205–214.
Bardon,  J. P., 1972, “Introduction à l’étude des résistances thermiques de contact,” Rev. Gen. Therm., 125, pp. 429–446.
Snaith,  B., Probert,  S. D., and O’Callaghan,  P. W., 1986, “Thermal Resistances of Pressed Contacts,” Appl. Energy, 22, pp. 31–84.
Sridhar,  M. R., and Yovanovich,  N. M., 1994, “Review of Elastic and Plastic Contact Conductance Models: Comparison With Experiment,” J. Thermophys. Heat Transfer, 8, No. 4, pp. 633–640.
Sridhar,  M. R., and Yovanovich,  N. M., 1996, “Elastoplastic Contact Conductance Model for Isotropic Conforming Rough Surfaces and Comparison With Experiments,” ASME J. Heat Transfer, 118, pp. 3–9.
Challen,  J. M., Mc Lean,  L. J., and Oxley,  P. L. B., 1984, “Plastic Deformation of a Metal Surface in Sliding Contact With a Hard Wedge: Its Reaction to Friction and Wear,” Proc. R. Soc. London, Ser. A, 394, pp. 161–181.
Johnson, W., Sowerby, R., and Venter, R. D., 1982, Plane Strain Slip Line Fields for Metal Deformation Processes: A Source Book and Bibliography, Pergamon, Tarrytown, NY.
Kennedy,  F. E., 1984, “Thermal and Thermomechanical Effect in Dry Sliding,” Wear, 100, pp. 453–476.
Chantrenne,  P., and Raynaud,  M., 1997, “A Microscopic Thermal Model for Dry Sliding Contact,” Int. J. Heat Mass Transf., 40, No. 5, pp. 1083–1094.
Beck,  J. V., and Keltner,  N. R., 1982, “Transient Thermal Contact of Two Semi-Infinite Bodies Over a Circular Area,” Spacecraft Radi. Transfer Temp. Control, 83, pp. 61–80.
Sadhal,  S. S., 1981, “Unsteady Heat Flow Between Solids With Partially Contacting Interface,” ASME J. Heat Transfer, 103, pp. 32–35.
Li, Y. H., and Sellars, C. M., 1996, “Evaluation of Interfacial Heat Transfer and Friction Conditions and Their Effects on Hot Forming Processes,” 37th MWSP Conf. Proc., ISS, 33 , pp. 385–393.
Chantrenne, P., and Raynaud, M., 1996, “Détermination numérique de la résistance thermique de contact entre deux solides en frottement sec à partir d’un modèle thermique microscopique,” Annual Congress of the SFT, Elsevier, New York.
Wong, H. Y., 1968, “Fundamental Studies of the Thermal Conductance of Metallic Contacts,” Proceedings of the 8th Conference on Thermal Conductivity, Plenum, New York, pp. 495–511.
Marchand, A. S., Salle, E., Raynaud, M., and Boyer, J. C., 1999, “Influence of a Time and Space TCR on the Workpiece Thermo-Mechanical Behavior During Hot Forming Process,” ESAFORM Congress, Portugal.

Figures

Grahic Jump Location
Microscopic model of the contact. Note that usually A<15 deg.
Grahic Jump Location
Real tool roughness: A=4 deg,h=6.4 μm
Grahic Jump Location
Forging code flow chart
Grahic Jump Location
Mesh of the microscopic model
Grahic Jump Location
(a) Example of temperature field near the interface without heat generation. h=10 μm,A=15 deg,k1=20 W/m⋅K,k2=10 W/m⋅K,h1=1.43 μm. (b) Linear extrapolation of the temperature field to determine the temperature jump (Tc1−Tc2) at the theoretical interface.
Grahic Jump Location
Example of numerical simulation. k1=400 W/m⋅K,k2=10 W/m⋅K,h=10 μm,h1=9.28 μm,A=20 deg,T∞1=200°C,T∞2=1100°C. (a) Temperature field near the interface without heat generation. (b) Linear extrapolation of the temperature field used to determine the temperature jump at the theoretical interface. Minimal ( * ), maximal (+) and extrapolated temperatures (-----) near the interface. Macroscopic interface temperatures determined at πo=e2 (•) and πo=e2+h (×) locations.
Grahic Jump Location
Thermal contact resistances Rcor and R versus the plastic wave height for h=10 μm,VI=140 μm(A=8.13 deg), kf≈0 W/m⋅K and for different values of k1 and k2
Grahic Jump Location
Thermal contact resistances Rcor and R versus the lubricant conductivities. Condition 1: k1=80 W/m⋅K,k2=60 W/m⋅K,h=7 μm,A=12 deg,VI=65.9 μm. Condition 2: k1=10 W/m⋅K,k2=40 W/m⋅K,h=16 μm,A=9.09 deg,VI=200 μm.
Grahic Jump Location
Thermal contact model for the Rth estimation
Grahic Jump Location
Thermal contact resistances Rcor and Rth, versus S *  for an asperity height of 10 μm

Tables

Errata

Discussions

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related Journal Articles
Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In