0
TECHNICAL PAPERS: Forced Convection

Modified Hazen-Dupuit-Darcy Model for Forced Convection of a Fluid With Temperature-Dependent Viscosity

[+] Author and Article Information
Arunn Narasimhan, José L. Lage

Laboratory for Porous Materials Applications, Mechanical Engineering Department, Southern Methodist University, Dallas, TX 75275 0337

J. Heat Transfer 123(1), 31-38 (Aug 20, 2000) (8 pages) doi:10.1115/1.1332778 History: Received May 02, 2000; Revised August 20, 2000
Copyright © 2001 by ASME
Your Session has timed out. Please sign back in to continue.

References

Darcy, H. P. G., 1856, Les Fontaines Publiques de la Ville de Dijon, Victor Dalmont, Paris.
Hazen, A., 1893., “Some Physical Properties of Sand and Gravels with Special Reference to Their Use in Filtration,” Twenty-Fourth Annual Report, Massachusetts State Board of Health, p. 541.
Dupuit, A. J. E. J., 1863, Études Théoriques et Pratiques sur le Mouvement des aux dans les Canaux Découverts et a Travers les Terrains Perméables, Victor Dalmont, Paris.
Lage, J. L., 1998, “The Fundamental Theory of Flow through Permeable Media; From Darcy to Turbulence,” Transport Phenomena in Porous Media, D. B. Ingham and I. Pop, eds., Pergamon, New York, pp. 1–30.
Kaviany, M., 1991, Principles of Heat Transfer in Porous Media, Springer-Verlag, New York.
Nield, D. A., and Bejan, A., 1999, Convection in Porous Media, 2nd ed. Springer-Verlag, New York.
Lauriat, G., and Vafai, K., 1991, “Forced Convective Flow and Heat Transfer Through a Porous Medium Exposed to a Flat Plate or a Channel,” Convective Heat and Mass Transfer in Porous Media, S. Kakaç et al., eds., Kluwer, Dordrecht, pp. 289–327.
Lage, J. L., and Narasimhan, A., 2000, “Porous Media Enhanced Forced Convection: Fundamentals and Applications,” Handbook of Porous Media, K. Vafai, ed., Marcel Dekker, New York, 8 , pp. 357–394.
Ling,  J. X., and Dybbs,  A., 1992, “The Effect of Variable Viscosity on Forced Convection over a Flat Plate Submersed in a Porous Medium,” ASME J. Heat Transfer, 114, pp. 1063–1065.
Kioupis,  L. I., and Maginn,  E. J., 1999, “Molecular Simulation of Poly-α-olefin Synthetic Lubricants: Impact of Molecular Architecture on Performance Properties,” J. Phys. Chem. B, 103, pp. 10781–10790.
Maginn, E., J., 2000, private communication.
Lage,  J. L., Antohe,  B. V., and Nield,  D. A., 1997, “Two Types of Nonlinear Pressure-Drop Versus Flow-Rate Relation Observed for Saturated Porous Media,” ASME J. Fluids Eng., 119, pp. 700–706.
Lage, J. L., Price, D. C., Weber, R. M., Schwartz, G. J., and McDaniel, J., 1999, “Improved Cold Plate Design for Thermal Management of Phased Array Radar Systems,” US Patent Office Patent #5960861.
Nield,  D. A., Porneala,  D. C., and Lage,  J. L., 1999, “A Theoretical Study, With Experimental Verification of the Viscosity Effect on the Forced Convection through a Porous Medium Channel,” ASME J. Heat Transfer, 121, pp. 500–503.
White, F. M., 1991, Viscosity Fluid Flow, 2nd ed., McGraw-Hill, New York.
Darby, R., 1996, Chemical Engineering Fluid Mechanics, Marcel-Dekker, New York.
Chevron, 1981, Synfluid Synthetic Fluids, Physical Property Data.
Nakayama, A., 1995, PC-aided Numerical Heat Transfer and Convective Flow, CRC Press, Boca Raton.
Patankar, S. V., 1980, Numerical Heat Transfer and Fluid Flow, Taylor & Francis, Washington, DC.
Hagen, G., 1839, “Ueber [Über] die Bewegung des Wassers in engen c[z]ylindrischen Röhren,” Poggendorfs Annalen der Physik und Chemis, 16 , p. 423.
Poiseuille, J. L. M., 1840, “Récherches Expérimentales sur le Mouvement des Liquides dans les Tubes de Très Petits Diamètres,” C. R. Acad. Sci. (Paris), 11 , pp. 961–967, 1041–1048.

Figures

Grahic Jump Location
Schematic of the flow channel considered for investigation
Grahic Jump Location
Longitudinal nondimensional pressure-drop versus drag-ratio parameter λ for several heat fluxes
Grahic Jump Location
Comparison of three HDD alternatives with numerical results for qw=38×10−3. Insert: relative pressure-drop error ε for the three HDD alternatives.
Grahic Jump Location
Longitudinal velocity profiles at mid-plane (x=L/2) for increasing heat flux
Grahic Jump Location
Variation of the temperature profile at mid-plane (x=L/2) for increasing heat flux
Grahic Jump Location
Verification of one (ζμC=1) and two (ζμC) coefficients model, Eq. (21)
Grahic Jump Location
Average deviation between curve-fit model results and numerical results
Grahic Jump Location
ζμ and ζC versus heat flux
Grahic Jump Location
Summary of hydrodynamic regimes for forced convection of fluid with temperature-dependent viscosity through a heated porous medium channel

Tables

Errata

Discussions

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related Journal Articles
Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In