0
TECHNICAL PAPERS: Radiative Transfer

An Efficient Method for Modeling Radiative Transfer in Multicomponent Gas Mixtures With Soot

[+] Author and Article Information
Vladimir P. Solovjov, Brent W. Webb

Department of Mechanical Engineering, Brigham Young University, Provo, UT 84602

J. Heat Transfer 123(3), 450-457 (Nov 03, 2000) (8 pages) doi:10.1115/1.1350824 History: Received September 28, 1999; Revised November 03, 2000
Copyright © 2001 by ASME
Your Session has timed out. Please sign back in to continue.

References

Lallemant,  N., Sayre,  A., and Weber,  R., 1996, “Evaluation of Emissivity Correlations for H2O-CO2-N2/Air Mixtures and Coupling with Solution Methods of the Radiative Transfer Equation,” Prog. Energy Combust. Sci., 22, pp. 543–574.
Özisik, M. N., 1973, Radiative Transfer, A Wiley-Interscience Publication, Wiley, New York.
Goody, R. M., and Yung, Y. L., 1989, Atmospheric Radiation, Clarendon Press, Oxford.
Bressloff,  N. W., 1999, “The Influence of Soot Loading on Weighted-Sum-of-Gray-Gases Solutions to the Radiative Transfer Equation Across Mixtures of Gases and Soot,” Int. J. Heat Mass Transf., 42, pp. 3469–3480.
Edwards,  D. K., 1976, “Molecular Gas Band Radiation,” Adv. Heat Transfer, 2, pp. 116–193.
Komornicki,  W., and Tomeczek,  J., 1992, “Modification of the Wide-Band Gas Radiation Model for Flame Calculation,” Int. J. Heat Mass Transf., 35, pp. 1667–1672.
Modak,  A. T., 1979, “Radiation From Products of Combustion,” Fire Res., 1, pp. 339–348.
Taylor,  P. B., and Foster,  P. J., 1974, “The Total Emissivities of Luminous and Non-Luminous Flames,” Int. J. Heat Mass Transf., 17, pp. 1591–1605.
Taylor,  P. B., and Foster,  P. J., 1975, “Some Gray Gas Weighting Coefficients for CO2-H2O-Soot Mixtures,” Int. J. Heat Mass Transf., 18, pp. 1331–1332.
Modest,  M. F., 1991, “The Weighted-Sum-of-Gray-Gases Model for Arbitrary Solution Methods in Radiative Transfer,” ASME J. Heat Transfer, 113, pp. 650–656.
Denison,  M. K., and Webb,  B. W., 1993, “A Spectral Line-Based Weighted-Sum-of-Gray-Gases Model for Arbitrary RTE Solvers,” ASME J. Heat Transfer, 115, pp. 1004–1012.
Dension, M. K., and Webb, B. W., 1996, “The Spectral Line Weighted-Sum-of-Gray-Gases Model—A Review,” in Radiative Transfer-I, Proceedings of the First International Symposium on Radiation Transfer, M. P. Mengüç, ed., Begell House, New York, pp. 193–208.
Denison, M. K., and Webb, B. W., 1994, “k-Distributions and Weighted-Sum-of-Gray-Gases—A Hybrid Model,” Heat Transfer-1994, Hemisphere, Washington, D.C., 2 , pp. 19–24.
Denison, M. K., 1994, “A Spectral Line-Based Weighted-Sum-of-Gray-Gases Model for Arbitrary RTE Solvers,” Ph.D. dissertation, Brigham Young University, Provo, UT.
Solovjov,  V. P., and Webb,  B. W., 2000, “SLW Modeling of Radiative Transfer in Multicomponent Gas Mixtures,” J. Quant. Spectrosc. Radiat. Transf., 65, pp. 655–672.
Siegel, R., and Howell, J. R., 1992, Thermal Radiation Heat Transfer, Hemisphere, New York.
Brewster, M. Q., 1992, Thermal Radiative Transfer and Properties, Wiley, New York.
Solovjov, V. P., and Webb, B. W., 1998, “Radiative Transfer Model Parameters for Carbon Monoxide at High Temperature,” in Proceedings of the Eleventh International Heat Transfer Conference, Kyongju, Korea, J. S. Lee, ed., 7 , pp. 445–450.
Mengüç,  M. P., and Viskanta,  R., 1987, “Radiation Heat Transfer in Combustion Systems,” Prog. Energy Combust. Sci., 13, pp. 97–160.
Modest, M. F., 1993, Radiative Heat Transfer, McGraw-Hill, New York.
Hottel, H. C., and Sarofim, A. F., 1967, Radiative Transfer, McGraw-Hill, New York.
Chang,  S. L., and Rhee,  K. T., 1984, “Blackbody Radiation Functions,” Int. Commun. Heat Mass Transfer, 1, pp. 451–455.
Denison,  M. K., and Webb,  B. W., 1993, “An Absorption-line Blackbody Distribution Function for Efficient Calculation of Gas Radiative Transfer,” J. Quant. Spectrosc. Radiat. Transf., 50, pp. 499–510.
Denison,  M. K., and Webb,  B. W., 1995, “Development and Application of an Absorption-Line Blackbody Distribution Function for CO2,” Int. J. Heat Mass Transf., 38, pp. 1813–1821.
Solovjov, V. P., 1999, “Spectral Line-Based Weighted-Sum-of-Gray-Gases Modeling of Radiative Transfer in Multicomponent Mixtures of Hot Gases,” Ph.D. dissertation, Brigham Young University, Provo, UT.
Rothman, L. S., Wattson, R. B., Gamache, R. R., Goorvitch, D., Hawkins, R. L., Selby, J. E. A., Camy-Peyret, C., Flaud, J.-M., and Schroeder, J., 2001, “HITEMP, the High-Temperature Molecular Spectroscopic Database,” J. Quant. Spectrosc. Radiat. Transf., (in press).
Truelove, J. S., 1975, “Zone Method for Radiative Heat Transfer Calculations,” HTFS DR 33, AERE, Harwell, Oxon, UK.

Figures

Grahic Jump Location
Absorption blackbody radiation distribution function for soot in the gas/soot mixture
Grahic Jump Location
Absorption blackbody radiation distribution function for soot at 1000 K
Grahic Jump Location
Line-by-line spectrum model
Grahic Jump Location
Predicted local radiative dissipation source in the isothermal, homogenous gas/soot mixture with different soot loadings
Grahic Jump Location
Predicted local radiative dissipation source in a one-dimensional layer of gas/soot mixture between cold and hot walls for different soot volume fractions: (a) L=0.1 m,fv=10−7, and (b) L=1.0 m,fv=10−6.
Grahic Jump Location
Predicted local, total radiative intensity in the one-dimensional layer of gas/soot with different soot loading. The SNB and WSGG results are from Bresloff 4.
Grahic Jump Location
Variation of the total radiative intensity with position in a non-homogeneous gas/soot mixture for different soot loadings. The SNB and WSGG results are from Bresloff 4.
Grahic Jump Location
Variation of the radiative dissipation source with position in a non-homogeneous gas/soot mixture for different soot loadings. The SNB and WSGG results are from Bresloff 4.

Tables

Errata

Discussions

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related Journal Articles
Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In