0
TECHNICAL PAPERS: Forced Convection

Energy Separation and Acoustic Interaction in Flow Across a Circular Cylinder

[+] Author and Article Information
R. J. Goldstein

University of Minnesota, Department of Mechanical Engineering, 111 Church Street, S.E., Minneapolis, MN 55455

Boyong He

510 Maloney Road, Poughkeepsie, NY 12603

J. Heat Transfer 123(4), 682-687 (Feb 12, 2001) (6 pages) doi:10.1115/1.1378020 History: Received April 18, 2000; Revised February 12, 2001
Copyright © 2001 by ASME
Your Session has timed out. Please sign back in to continue.

References

Eckert, E. R. G., and Drake, R. M. J., 1972, Analysis of Heat and Mass Transfer, McGraw-Hill, New York, pp. 265–270.
Ranque,  G., 1933, “Expériences sur la Détente Giratoire avec Productions Simultanées d’un échappement d’air chaud et d’un échappement d’air Froid,” J. Phys. Radium, 4, pp. 112–114.
Hilsch,  R., 1947, “The Use of Expansion of Gases in a Centrifugal Field as a Cooling Process,” Rev. Sci. Instrum., 18, pp. 108–113.
Hartnett,  J. P., and Eckert,  E. R. G., 1957, “Experimental Study of the Velocity and Temperature Distribution in a High-Velocity Vortex-Type Flow,” Trans. ASME, 79, pp. 751–758.
Marshall,  J., 1977, “Effect of Operating Conditions, Physical Size and Fluid Characteristics on the Gas Separation Performance on the Linderstrom-Lang Vortex Tube,” Int. J. Heat Mass Transf., 20, pp. 227–231.
Kurosaka,  M., 1982, “Acoustic Streaming in Swirling Flow and the Ranque-Hilsch (Vortex Tube) Effect,” J. Fluid Mech., 124, pp. 139–172.
Sprenger,  H., 1954, “Über Thermische Effecte in Resonanzrohren,” Mitteilungen aus dem Institut für Aerodynamik, Eidgen. Tech. Hochschule Zürich, 21, pp. 18.
O’Callaghan,  J. J., and Kurosaka,  M., 1993, “Vortex-Induced Energy Separation in Shear Flow,” AIAA J., 13, pp. 1157–1159.
Goldstein,  R. J., Behbahani,  A. I., and Heppelmann,  K. K., 1986, “Streamwise Distribution of the Recovery Factor and the Local Heat Transfer Coefficient in an Impinging Air Jet,” Int. J. Heat Mass Transf., 29, pp. 1227–1235.
Goldstein, R. J., Sobolik, K. A., and Seol, W., 1990, “Efefct of Entrainment on the Heat Transfer to a Heated Circular Air Jet Impinging on a Flat Surface,” , 112, pp. 608–611.
Fox, M., Kurosaka, M., and Hirano, K., 1990, “Total Temperature Separation in Jets,” AIAA Paper 90-1621.
Seol, W., 1993, “Energy Separation in a Jet Flow,” Ph.D. thesis, Department of Mechanical Engineering, University of Minnesota, Minneapolis, MN.
Eckert,  E. R. G., and Weise,  W., 1940, “Messungn der Temperaturverteilung auf der Oberfläche Schnell Angeströmter umbeheizter Körper,” Jahrbuch 1940 der Deutschen Luftfahrtforschung, 2, pp. 25–31.
Ryan, L. F., 1951, “Experiments on Aerodynamic Cooling,” Ph.D. thesis, Eidgen. Tech. Hochschule, Zürich.
Thomann, H., 1959, “FFA Report 84,” Stockholm, Sweden.
Eckert,  E. R. G., 1987, “Cross Transport of Energy in Fluid Stream,” Wärme und Stoffübertragung, 21, pp. 73–81.
Kurosaka,  M., and Gertz,  J. B., 1987, “Energy Separation in a Vortex Street,” J. Fluid Mech., 178, pp. 1–29.
Ng,  W. F., Chakroun,  M., and Kurosaka,  M., 1990, “Time-Resolved Measurement of Total Temperature and Pressure in the Vortex Stress Behind a Cylinder,” Phys. Fluids A, 12, pp. 971–978.
Wang, H. P., 1997, “Local Mass Transfer from a Turbine Blade: Influence of High Turbulence with Large Length Scale on Heat/Mass Transfer,” Ph.D. thesis, Department of Mechanical Engineering, University of Minnesota, Minneapolis, MN.
Coleman, H. W., and Steele, W. G. S. J., 1989, Experimentation and Uncertainty Analysis for Engineers, Wiley, New York, pp. 75–116.
He, B., 1997, “Energy Separation for High Speed Flow Across a Circular Cylinder,” Master’s thesis, Department of Mechanical Engineering, University of Minnesota, Minneapolis, MN.
Ericsson,  L. E., and Reding,  J. P., 1979, “Criterion for Vortex Periodicity in Cylinder Wakes,” AIAA J., 17, pp. 1013.

Figures

Grahic Jump Location
Schematic drawing of cylinder and surface mounted hot wire
Grahic Jump Location
Comparison of energy separation factor, S, and flow visualization around the cylinder for U≈84 m/s
Grahic Jump Location
Proposed traveling vortex pattern around a circular cylinder
Grahic Jump Location
Energy separation factor, S
Grahic Jump Location
Energy separation factor, Sl, distributions for 5 different velocities
Grahic Jump Location
Acoustic measurement for U=84 m/s
Grahic Jump Location
Acoustic measurement for U=100 m/s
Grahic Jump Location
Comparison between energy separation factor, S, distributions and flow visualization around the cylinder for U=84 m/s with 3.0 mm splitter plate
Grahic Jump Location
Energy separation factor, S, comparison among cases with 3.0 mm, 9.4 mm and without splitter plate for U≈84 m/s
Grahic Jump Location
Energy separation factor, S, comparison among cases with 3.0 mm splitter plate for U=72 m/s, 84 m/s, 94 m/s, 100 m/s

Tables

Errata

Discussions

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related Journal Articles
Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In