0
TECHNICAL PAPERS: Microscale Heat Transfer

Molecular Dynamics Simulation of Nanodroplet Evaporation

[+] Author and Article Information
J. H. Walther, P. Koumoutsakos

Institute of Computational Sciences, ETH Zentrum, Weinbergstrasse 43, CH-8092 Zürich, Switzerland

J. Heat Transfer 123(4), 741-748 (Nov 20, 2000) (8 pages) doi:10.1115/1.1370517 History: Received September 10, 1999; Revised November 20, 2000
Copyright © 2001 by ASME
Your Session has timed out. Please sign back in to continue.

References

Figures

Grahic Jump Location
Droplet density and temperature profiles during accommodation and evaporation of the 5768 atom droplet (Case E01). (—: τ*=25; – – –: τ*=30; - - -: τ*=100)
Grahic Jump Location
Sketch of computational domain and heating element
Grahic Jump Location
Example of a two-dimensional tree created for 16 atoms and allowing one particle per box
Grahic Jump Location
Example of colleagues of boxes in the two-dimensional tree created for the 16 atoms shown in Fig. 2. The colleagues of the filled boxes are marked with an ×.
Grahic Jump Location
Example of neighbors of boxes in the two-dimensional tree created for the 16 atoms shown in Fig. 2. The neighbors of the filled boxes are marked with an ×. The interactions of the particles in the two (filled) neighboring boxes are computed at the level of the larger box (left) utilizing the symmetry of Eq. (4).
Grahic Jump Location
Atoms in neighboring boxes are stored in consecutive memory locations to allow efficient computations using Morton ordering
Grahic Jump Location
Convergence of the density and temperature profiles as function of the cutoff radius for the 5768 droplet at τ*=200. —: rc/σ=2.5 (Case E01); –––: rc/σ=5.0 (Case E02); - - -: rc/σ=10.0 (Case E03)
Grahic Jump Location
Evaporation curve for the 5768 droplet. +: E01 (rc/σ=2.5); ×: E02 (rc/σ=5.0);* : E03 (rc/σ=10.0); □: E05 (rc/σ=2.5); —: Theory.
Grahic Jump Location
Density and temperature profiles during evaporation for the 5867 atom droplet (Case E02). —: τ*=100; –––: τ*=200; - - -: τ*=300.
Grahic Jump Location
Time history of the 5867 atom droplet during evaporation (Case E02) (vapor not shown). From left to right: τ*=100, 200, and 300.
Grahic Jump Location
Evaporation curve for the 22360 atom droplet. +: E06; —: Theory.
Grahic Jump Location
Time history of the 22360 atom droplet during evaporation (vapor not shown). From left to right: τ*=100, 300, and 500.
Grahic Jump Location
Evaporation curve for the 51104 atom droplet. +: E07; —: Theory.
Grahic Jump Location
Time history of the 51104 droplet during evaporation. From left to right: τ*=100, 400, and 700.
Grahic Jump Location
Evaporation rate. —: 5678 atom droplet; –––: 22310 atom droplet; - - -: 51104 atom droplet.

Tables

Errata

Discussions

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related Journal Articles
Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In