0
TECHNICAL PAPERS: Boiling and Condensation

Jet Impingement Boiling From a Circular Free-Surface Jet During Quenching: Part 1—Single-Phase Jet

[+] Author and Article Information
David E. Hall

Michelin Americas Research Corporation, 515 Michelin Road, Greenville, SC 29602

Frank P. Incropera

Notre Dame University, South Bend, IN 46556e-mail: fpi@nd.edu

Raymond Viskanta

School of Mechanical Engineering, Purdue University, West Lafayette, IN 47907

J. Heat Transfer 123(5), 901-910 (Mar 22, 2001) (10 pages) doi:10.1115/1.1389061 History: Received May 27, 1997; Revised March 22, 2001
Copyright © 2001 by ASME
Your Session has timed out. Please sign back in to continue.

References

Viskanta, R., and Incropera, F. P., 1992, “Quenching with Liquid Jet Impingement,” Heat and Mass Transfer in Materials Processing, Hemisphere, I. Tanasawa and N. Lior, eds., New York, pp. 455–476.
Wolf, D. H., Incropera, F. P., and Viskanta, R., 1993, “Jet Impingement Boiling,” Advances in Heat Transfer, J. P. Hartnett, T. F. Irvine, and Y. I. Cho, eds., Academic Press, Inc., Boston, 23 , pp. 1–132.
Vader,  D. T., Incropera,  F. P., and Viskanta,  R., 1992, “Convective Nucleate Boiling on a Heated Surface Cooled by an Impinging, Planar Jet of Water,” ASME J. Heat Transfer, 114, pp. 152–160.
Wolf,  D. H., Incropera,  F. P., and Viskanta,  R., 1996, “Local Jet Impingement Boiling Heat Transfer,” Int. J. Heat Mass Transf., 39, pp. 1395–1406.
Kumagai, S., Suzuki, S., Sano, Y., and Kawazoe, M., 1995, “Transient Cooling on a Hot Metal Slab by an Impinging Jet with Boiling Heat Transfer,” L. S. Fletcher and T. Aiahara, eds., Proceedings, ASME/JSME Thermal Engineering Joint Conference, Vol. 2, ASME, New York, pp. 347–352.
Filipovic,  J., Incropera,  F. P., and Viskanta,  R., 1995, “Quenching Phenomena Associated with a Water Wall Jet: I. Transient Hydrodynamic and Thermal Conditions,” Experimental Heat Transfer, 8, pp. 97–117.
Filipovic,  J., Incropera,  F. P., and Viskanta,  R., 1995, “Quenching Phenomena Associated with a Water Wall Jet: II. Comparison of Experimental and Theoretical Results for the Film Boiling Region,” Exp. Heat Transfer, 8, pp. 119–130.
Ishigai, S., Nakanishi, S., and Ochi, T., 1978, “Boiling Heat Transfer for a Plane Water Jet Impinging on a Hot Surface,” Proceedings, 6th International Heat Transfer Conference, Vol. 1, Hemisphere, Washington, pp. 445–450.
Ochi, T., Nakanishi, S., Kaji, M., and Ishigai, S., 1983, “Cooling of a Hot Plate with an Impinging Circular Water Jet,” Proceedings, Multi-Phase Flow and Heat Transfer III, T. N. Veziroglu and A. E. Bergles, eds., Elsevier, Amsterdam, pp. 671–681.
Hatta,  N., Kokado,  J.-I., and Hanasaki,  K., 1983, “Numerical Analysis of Cooling Characteristics for Water Bar,” Trans. Iron Steel Inst. Jpn., 23, pp. 555–564.
Filipovic,  J., Incropera,  F. P., and Viskanta,  R., 1995, “Rewetting Temperatures and Velocity in a Quenching Experiment,” Exp. Heat Transfer, 8, pp. 257–270.
Hall,  D. E., Incropera,  F. P., and Viskanta,  R., 2001, “Jet Impingement Boiling From a Circular Free-Surface Jet During Quenching: II—Two-Phase Jet,” ASME J. Heat Transfer, 123, pp. 911–917.
El-Genk,  M. S., and Glebov,  A., 1995, “Numerical Solution of Transient Heat Conduction in a Cylindrical Section During Quenching,” Numer. Heat Transfer, Part A, 28, pp. 547–574.
Patankar, S. V., 1980, Numerical Heat Transfer and Fluid Flow, Hemisphere, New York.
Beck, J. V., Blackwell, B., and St. Clair, C. R., 1985, Inverse Heat Conduction, John Wiley & Sons, New York.
Chapra, S. C., and Canale, R. P., 1988, Numerical Methods for Engineers, 2nd ed., McGraw-Hill, New York.
Moffat,  R. J., 1988, “Describing the Uncertainties in Experimental Results,” Exp. Therm. Fluid Sci., 1, pp. 3–17.
Coleman, H. W., and Steele, W. G., 1989, Experimental and Uncertainty Analysis for Engineers, John Wiley & Sons, New York.
Piggott,  B. D. G., White,  E. P., and Duffey,  R. B., 1976, “Wetting Delay Due to Film and Transition Boiling on Hot Surfaces,” Nucl. Eng. Des., 36, pp. 169–181.
Shibayama,  S., Katsuta,  M., Suzuki,  K., Kurose,  T., and Hatano,  Y., 1979, “A Study on Boiling Heat Transfer in a Thin Liquid Film (Part 1: In the Case of Pure Water and an Aqueous Solution of a Surface Active-Agent as the Working Liquid),” Heat Transfer—Jpn. Res., 8, pp. 12–40.
Nonn, T., Dagan, Z., and Jiji, L. M., 1988, “Boiling Jet Impingement Cooling of Simulated Microelectronic Heat Sources,” ASME Paper No. 88-WA/EEP-3.
Katsuta,  M., and Kurose,  T., 1981, “A Study on Boiling Heat Transfer in Thin Liquid Film (2nd Report, the Critical Heat Flux of Nucleate Boiling),” Transactions of JSME, 47B, pp. 1849–1860.
Ma. C.-F., Yu, J., Lei, D. H., Gan, Y. P., Auracher, H., and Tsou, F. K., 1989,“Jet Impingement Transient Boiling Heat Transfer on Hot Surfaces,” Proceedings, Multiphase Flow and Heat Transfer Second International Symposium, Vol. 1, X.-J. Chen, T. N. Veziroglu and C. L. Tien, eds., Hemisphere, New York, pp. 349–357.
Monde,  M., 1985, “Critical Heat Flux in Saturated Forced Convective Boiling on a Heated Disk with an Impinging Jet,” Wäerme- und Stroffüebertrag, 19, pp. 205–209.
Sharan,  A., and Lienhard,  J. H., 1985, “On Predicting Burnout in the Jet-Disk Configuration,” ASME J. Heat Transfer, 107, pp. 398–401.
Cho, C. S. K., and Wu. K., 1988, “Comparison of Burnout Characteristics in Jet Impingement Cooling and Spray Cooling,” Proceedings, 1988 National Heat Transfer Conference, Vol. 1, H. R. Jacobs, ed., ASME, New York, pp. 561–567.
Katto,  Y., and Yokoya,  S., 1988, “Critical Heat Flux on a Disk Heater Cooled by a Circular Jet of Saturated Liquid Impinging at the Center,” Int. J. Heat Mass Transf., 31, pp. 219–227.
Kandula,  M., 1990, “Mechanisms and Predictions of Burnout in Flow Boiling Over Heated Surfaces with an Impinging Jet,” Int. J. Heat Mass Transf., 33, pp. 1795–1803.
Skema, R. K., and Slanciauskas, A. A., 1990, “Critical Heat Fluxes as Jet-Cooled Flat Surfaces,” Heat Transfer in Electronic and Microelectronic Equipment, A. E. Bergles, ed., Hemisphere, New York, pp. 621–626.
Monde,  M., 1980, “Burnout Heat Flux in Saturated Forced Convection Boiling with an Impinging Jet,” Heat Transfer–Jpn. Res., 9, pp. 31–41.
Carbajo,  J. J., 1985, “A Study on the Rewetting Temperature,” Nucl. Eng. Des., 84, pp. 21–52.

Figures

Grahic Jump Location
Interpolated thermocouple temperature distributions (Ti=650°C, Vn=3.0 m/s, ΔTSUB=75°C)
Grahic Jump Location
Sequence of events associated with a quenching experiment (Ti=650°C, Vn=3.0 m/s, ΔTSUB=75°C)
Grahic Jump Location
Heat flux distributions demonstrating boiling front progression (Ti=650°C, Vn=3.0 m/s, ΔTSUB=75°C)
Grahic Jump Location
Boiling curves (Ti=650°C, Vn=3.0 m/s, ΔTSUB=75°C)
Grahic Jump Location
Stagnation point nucleate boiling curves (Ti=650°C, Vn=3.0 m/s, ΔTSUB=75°C)
Grahic Jump Location
Variation of maximum heat flux with velcoity and position (ΔTSUB=75°C)
Grahic Jump Location
Correlated variation of maximum heat flux with velocity and position in the radial flow region (ΔTSUB=75°C)
Grahic Jump Location
Minimum film boiling heat flux as a function of TMIN(ΔTSUB=75°C)
Grahic Jump Location
Radial distribution of TMIN (ΔTSUB=75°C)

Tables

Errata

Discussions

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related Journal Articles
Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In