Thermometry and Thermal Transport in Micro/Nanoscale Solid-State Devices and Structures

[+] Author and Article Information
David G. Cahill

Department of Materials Science and Engineering, and the Frederick Seitz Materials Research Laboratory, University of Illinois, Urbana, IL 61801

Kenneth Goodson

Department of Mechanical Engineering, Stanford University, Stanford, CA 94305

Arunava Majumdar

Department of Mechanical Engineering, University of California, Berkeley, CA 94720e-mail: majumdar@me.berkeley.edu

J. Heat Transfer 124(2), 223-241 (Dec 07, 2001) (19 pages) doi:10.1115/1.1454111 History: Received July 27, 2001; Revised December 07, 2001
Copyright © 2002 by ASME
Your Session has timed out. Please sign back in to continue.


Verhoeven,  H., Boettger,  E., Flöter,  A., Reiss,  H., and Zachai,  R., 1997, “Thermal Resistance and Electrical Insulation of Thin Low-Temperature-Deposited Diamond Films,” Diamond Relat. Mater., 6, pp. 298–302.
Banerjee, K., Amerasekera, A., Dixit, G., Cheung, N., and Hu, C., 1997, “Characterization of Contact and Via Failure under Short Duration Hight Pulsed Current Stree,” Proc. International Reliability Physics Symposium, pp. 216–220.
Cheung,  N. K., Nosu,  K., and Winzer,  G., 1990, “Guest Editorial—Dense Wavelength Division Multiplexing Techniques for High Capacity and Multiple Access Communication Systems,” IEEE J. Sel. Areas Commun., 8, pp. 945–947.
Margalit,  N. M., Babic,  D. I., Streubel,  K., Mirin,  R. P., Mars,  D. E., Bowers,  J. E., and Hu,  E. L., 1996, “Laterally Oxidized Long Wavelength CW Vertical Cavity Lasers,” Appl. Phys. Lett., 69, pp. 471–473.
Karim,  A., Bjorlin,  S., Piprek,  J., and Bowers,  J. E., 2000, “Long-Wavelength Vertical Cavity Lasers and Amplifiers,” IEEE J. Sel. Top. Quantum Electron., 6, pp. 1244–1253.
Towe,  E., Leheny,  R. F., and Yang,  A., 2000, “A Historical Perspective of the Development of the Vertical-Cavity Surface Emitting Laser,” IEEE J. Sel. Top. Quantum Electron., 6, pp. 1458–1464.
Fan,  X. F., Zeng,  G. H., LaBounty,  C., Bowers,  J. E., Croke,  E., Ahn,  C. C., Huxtable,  S., Majumdar,  A., and Shakouri,  A., 2001, “SiGeC/Si Superlattice Coolers,” Appl. Phys. Lett., 78, pp. 1580–1582.
Mahan,  G., Sales,  B., and Sharp,  J., 1997, “Thermoelectric Materials: New Approaches to an Old Problem,” Phys. Today, 50, pp. 42–47.
Dresselhaus,  M. S., Dresselhaus,  G., Sun,  X., Zhang,  Z., Cronin,  S. B., Koga,  T., Ying,  J. Y., and Chen,  G., 1999, “The Promise of Low-Dimensional Thermoelectric Materials,” Microscale Thermophys. Eng., 3, pp. 89–100.
Williams,  C. C., and Wickramasinghe,  H. K., 1986, “Scanning Thermal Profiler,” Appl. Phys. Lett., 49, pp. 1587–1589.
Williams, C. C., and Wickramasinghe, H. K., 1988, “Photothermal Imaging With Sub-100 nm Spatial Resolution,” in Optical Sciences, A. L. Schawlow, ed. Springer Series, pp. 364–369.
Majumdar,  A., Carrejo,  J. P., and Lai,  J., 1993, “Thermal Imaging Using the Atomic Force Microscope,” Appl. Phys. Lett., 62, pp. 2501–2503.
Majumdar,  A., Lai,  J., Chandrachood,  M., Nakabeppu,  O., Wu,  Y., and Shi,  Z., 1995, “Thermal Imaging by Atomic Force Microscopy Using Thermocouple Cantilever Probes,” Rev. Sci. Instrum., 66, pp. 3584–3592.
Stopka,  M., Hadjiiski,  L., Oerterschulze,  E., and Kassing,  R., 1995, “Surface Investigations by Scanning Thermal Microscopy,” J. Vac. Sci. Technol. B, 13, pp. 2153–2156.
Luo,  K., Shi,  Z., Lai,  J., and Majumdar,  A., 1996, “Nanofabrication of Sensors on Cantilever Probe Tips for Scanning Multiprobe Microscopy,” Appl. Phys. Lett., 68, pp. 325–327.
Oesterschulze,  E., Stopka,  M., Ackermann,  L., Scholz,  W., and Werner,  S., 1996, “Thermal Imaging of Thin Films by Scanning Thermal Microscope,” J. Vac. Sci. Technol. B, 14, pp. 832–837.
Luo,  K., Shi,  Z., Varesi,  J., and Majumdar,  A., 1997, “Sensor Nanofabrication, Performance, and Conduction Mechanisms in Scanning Thermal Microscopy,” J. Vac. Sci. Technol. B, 15, pp. 349–360.
Nakabeppu,  O., Igeta,  M., and Hijikata,  K., 1997, “Experimental Study of Point Contact Transport Phenomena Using the Atomic Force Microscope,” Microscale Thermophys. Eng., 1, pp. 201–213.
Mills,  G., Zhou,  H., Midha,  A., Donaldson,  L., and Weaver,  J. M. R., 1998, “Scanning Thermal Microscopy Using Batch Fabricated Thermocouple Probe,” Appl. Phys. Lett., 72, pp. 2900–2902.
Nonnenmacher,  M., and Wickramasinghe,  H. K., 1992, “Scanning Probe Microscopy of Thermal Conductivity and Substrate Properties,” Appl. Phys. Lett., 61, pp. 168–170.
Pylkki,  R. J., Moyer,  P. J., and West,  P. E., 1994, “Scanning Near-Field Optical Microscopy and Scanning Thermal Microscopy,” Jpn. J. Appl. Phys., Part 1, 33, pp. 3785–3790.
Maywald,  M., Pylkki,  R. J., and Balk,  L. J., 1994, “Imaging of Local Thermal and Electrical Conductivity With Scanning Force Microscopy,” Scanning Microsc., 8, pp. 181–188.
Hammiche,  A., Hourston,  D. J., Pollock,  H. M., Reading,  M., and Song,  M., 1996, “Scanning Thermal Microscopy: Sub-Surface Imaging, Thermal Mapping of Polymer Blends, and Localized Calorimetry,” J. Vac. Sci. Technol. B, 14, pp. 1486–1491.
Hammiche,  A., Reading,  M., Pollock,  H. M., Song,  M., and Hourston,  D. J., 1996, “Localized Thermal Analysis Using a Miniaturized Resistive Probe,” Rev. Sci. Instrum., 67, pp. 4268–4273.
Nakabeppu,  O., Chandrachood,  M., Wu,  Y., Lai,  J., and Majumdar,  A., 1995, “Scanning Thermal Imaging Microscopy Using Composite Cantilever Probes,” Appl. Phys. Lett., 66, pp. 694–696.
Varesi,  J., and Majumdar,  A., 1998, “Scanning Joule Expansion Microscopy at Nanometer Scales,” Appl. Phys. Lett., 72, pp. 37–39.
Majumdar,  A., and Varesi,  J., 1998, “Nanoscale Temperature Distributions Measured by Scanning Joule Expansion Microscopy,” ASME J. Heat Transfer, 120, pp. 297–305.
Binnig,  G., Quate,  C. F., and Gerber,  Ch., 1986, “Atomic Force Microscope,” Phys. Rev. Lett., 56, pp. 930–933.
Lai,  J., Chandracood,  M., Majumdar,  A., and Carrejo,  J. P., 1995, “Thermal Detection of Device Failure by Atomic Force Microscopy,” IEEE Electron Device Lett., 16, pp. 312–315.
Luo,  K., Herrick,  R. W., Majumdar,  A., and Petroff,  P., 1997, “Scanning Thermal Microscopy of a Vertical Cavity Surface Emitting Laser,” Appl. Phys. Lett., 71, pp. 1604–1606.
Ruiz,  F., Sun,  W. D., Pollak,  F. H., and Venkatraman,  C., 1998, “Determination of Thermal Conductivity of Diamond-Like Nanocomposite Films Using a Scanning Thermal Microscope,” Appl. Phys. Lett., 73, pp. 1802–1804.
Majumdar,  A., 1999, “Scanning Thermal Microscopy,” Annu. Rev. Mater. Sci., 29, pp. 505–585.
Shi, L., 2001, “Mesoscopic Thermophysical Measurements of Microstructures and Carbon Nanotubes,” Ph.D. thesis, Dept. of Mechanical Engineering, UC Berkeley.
Shi,  L., Kwon,  O., Miner,  A. C., and Majumdar,  A., 2001, “Design and Fabrication of Probes for Sub-100 nm Scanning Thermal Microscopy,” J. of MEMS, 10, pp. 370–378.
Shi, L., and Majumdar, A., “Thermal Transport Mechanisms at Nanoscale Point Contacts,” ASME J. Heat Transfer (in press).
Kwon, O., 2001, “Thermal Design, Fabrication, and Imaging of MEMS and Microelectronic Structures,” Ph.D. dissertation, Dept. of Mechanical Engineering, U.C. Berkeley.
Dresselhaus, M. S., Dresselhaus, G., and Eklund, P., 1996, Science of Fullerenes and Carbon Nanotubes, Academic Press, New York.
Shi,  L., Plyasunov,  S., Bachtold,  A., McEuen,  P., and Majumdar,  A., 2000, “Scanning Thermal Microscopy of Carbon Nanotubes Using Batch Fabricated Probes,” Appl. Phys. Lett., 77, pp. 4295–4297.
Yao,  Z., Kane,  C. L., and Dekker,  C., 2000, “High-Field Electric Transport in Single-Wall Carbon Nanotubes,” Phys. Rev. Lett., 84, pp. 2941–2944.
Phelan,  P. E., Nakabeppu,  O., Ito,  K., Hijikata,  K., Ohmori,  T., and Torikoshi,  K., 1993, “Heat Transfer and Thermoelectric Voltage at Metallic Point Contacts,” ASME J. Heat Transfer, 115, pp. 757–762.
Loomis,  J. J., and Maris,  H. J., 1994, “Theory of Heat Transfer by Evanescent Electromagnetic Waves,” Phys. Rev. B, 50, pp. 18517–18524.
Xu,  J. B., Lüger,  K., Möller,  R., Dransfeld,  K., and Wilson,  I. H., 1994, “Heat Transfer Between Two Metallic Surface at Small Distances,” J. Appl. Phys., 76, pp. 7209–7216.
Mulet,  J. P., Joulian,  K., Carminati,  R., and Greffet,  J. J., 2001, “Nanoscale Radiative Heat Transfer Between a Small Particle and a Plane Surface,” Appl. Phys. Lett., 78, pp. 2931–2933.
Leinhos,  T., Stopka,  M., and Oesterschulze,  E., 1998, “Micromachined Fabrication of Si Cantilevers With Schottky Diodes Integrated in the Tip,” Appl. Phys. A: Solids Surf., 66, pp. S65–S69.
Mihalcea,  C., Vollkopf,  A., and Oesterschulze,  E., 2000, “Reproducible Large-Area Microfabrication of Sub-100 nm Apertures on Hollow Tips,” J. Electrochem. Soc., 147, pp. 1970–1972.
Hicks,  L. D., and Dresselhaus,  M. S., 1993, “Thermoelectric Figure of Merit of a One-Dimensional conductor,” Phys. Rev. B, 47, pp. 16631–16634.
Paddock,  C. A., and Eesley,  G. L., 1986, “Transient Thermoreflectance From Thin Metal Films,” J. Appl. Phys., 60, pp. 285–290.
Käding,  O. W., Skurk,  H., and Goodson,  K. E., 1994, “Thermal Conductance in Metallized Silicon-Dioxide Layers on Silicon,” Appl. Phys. Lett., 65, pp. 1629–1631.
Lee,  S.-M., and Cahill,  D. G., 1997, “Heat Transport in Thin Dielectric Films,” J. Appl. Phys., 81, pp. 2590–2595.
Hostetler,  J. L., Smith,  A. N., Czajkowsky,  D. M., and Norris,  P. M., 1999, “Measurement of the Electron-Phonon Coupling Factor Dependence on Film Thickness and Grain Size in Au, Cr, and Al,” Appl. Opt., 38, pp. 3614–3620.
Clemens,  B. M., Eesley,  G. L., and Paddock,  C. A., 1988, “Time-Resolved Thermal Transport in Compositionally Modulated Metal Films,” Phys. Rev. B, 37, pp. 1085–1096.
Stoner,  R. J., and Maris,  H. J., 1993, “Kapitza Conductance and Heat Flow Between Solids at Temperatures From 50 to 300 K,” Phys. Rev. B, 48, pp. 16373–16387.
Taketoshi,  N., Baba,  T., and Ono,  A., 1999, “Observation of Heat Diffusion Across Submicrometer Metal Thin Films Using a Picosecond Thermoreflectance Technique,” Jpn. J. Appl. Phys., Part 2, 38, pp. L1268–1271.
Capinski,  W. S., Maris,  H. J., Ruf,  T., Cardona,  M., Ploog,  K., and Katzer,  D. S., 1999, “Thermal-Conductivity Measurements of GaAs/AlAs Superlattices Using a Picosecond Optical Pump-and-Probe Technique,” Phys. Rev. B, 59, pp. 8105–8113.
Smith,  A. N., Hostetler,  J. L., and Norris,  P. M., 2000, “Thermal Boundary Resistance Measurements Using a Transient Thermoreflectance Technique,” Microscale Thermophys. Eng., 4, pp. 51–60.
Capinski,  W. S., and Maris,  H. J., 1996, “Improved Apparatus for Picosecond Pump-and-Probe Optical Measurements,” Rev. Sci. Instrum., 67, pp. 2720–2726.
Bonello,  B., Perrin,  B., and Rossignol,  C., 1998, “Photothermal Properties of Bulk and Layered Materials by the Picosecond Acoustics Technique,” J. Appl. Phys., 83, pp. 3081–3088.
Carslaw, H. S., and Jaeger, J. C., 1959, Conduction of Heat in Solids, Oxford University Press, New York, pp. 109–112.
Chen,  G., and Tien,  C. L., 1993, “Internal Reflection Effects on Transient Photothermal Reflectance,” J. Appl. Phys., 73, pp. 3461–3466.
Mertin,  W., 1996, “New Aspects in Electro-Optic Sampling,” Microelectron. Eng., 31, pp. 365–376.
Sheridan,  J. A., Bloom,  D. M., and Solomon,  P. M., 1995, “System for Direct Measurement of the Step Response of Electronic Devices on the Picosecond Time-Scale,” Opt. Lett., 20, pp. 584–586.
Ju, Y. S., and Goodson, K. E., 1999, Microscale Heat Conduction in Integrated Circuits and Their Constituent Films, chap. 2, Kluwer Academic Publishers, Norwell, MA.
Brugger,  H., and Epperlein,  P. W., 1990, “Mapping of Local Temperatures on Mirrors of GaAs/AlGaAs Laser Diodes,” Appl. Phys. Lett., 56, pp. 1049–1051.
Ostermeier,  R., Brunner,  K., Abstreiter,  G., and Weber,  W., 1992, “Temperature Distribution in Si-MOSFET’s Studied by Micro-Ramn Spectroscopy,” IEEE Trans. Electron Devices, 39, pp. 858–863.
Iwata,  K., and Hamaguchi,  H., 1997, “Microscopic Mechanism of Solute-Solvent Energy Dissipation Probed by Picosecond Time-Resolved Raman Spectroscopy,” J. Phys. Chem., 101, No. 4, pp. 632–637.
Martin,  Y., and Wickramsinghe,  H. K., 1987, “Study of Dynamic Current Distribution in Logic Circuits by Joule Expansion Microscopy,” Appl. Phys. Lett., 50, pp. 167–168.
Donnelly,  V. M., 1993, “Extension of Infrared-Laser Interferometric Thermometry to Silicon-Wafers Polished on Only One Side,” Appl. Phys. Lett., 63, No. 10, pp. 1396–1396.
Glanner,  G. J., Sitter,  H., Faschinger,  W., and Herman,  M. A., 1994, “Evaluation of Growth Temperature, Refractive-Index, and Layer Thickness of Thin znte, mnte, and cdte-films by in-situ Visible Laser Interferometry,” Appl. Phys. Lett., 65, No. 8, pp. 998–1000.
Hall,  D. C., Goldberg,  L., and Mehuys,  D., 1992, “Technique for Lateral Temperature Profiling in Optoelectronic Devices Using a Photoluminescence Microscope,” Appl. Phys. Lett., 61, pp. 384–386.
Kolodner,  P., and Tyson,  J. A., 1982, “Microscopic Fluorescent Imaging of Surface Temperature Profiles with 0.01 C Resolution,” Appl. Phys. Lett., 40, pp. 782–784.
Cardona, M., 1969, “Modulation Spectroscopy,” in Solid State Physics, Suppl. 11, F. Seitz, D. Turnbull, and H. Ehrenreich, eds., Acadmic Press, New York.
Claeys,  W., Dilhaire,  S., Quintard,  V., Dom,  J. P., and Danto,  Y., 1993, “Thermoreflectance Optical Test Probe for the Measurement of Current-Induced Temperature Change in Microelectronic Components,” Reliability Engineering International, 9, pp. 303–308.
Mansanares,  A. M., Roger,  J. P., Fournier,  D., and Boccara,  A. C., 1994, “Temperature Field Determination of InGaAsP/InP Lasers by Photothermal Microscopy: Evidence for Weak Nonradiative Process at the Facets,” Appl. Phys. Lett., 64, pp. 4–6.
Epperlein,  P.-W., 1993, “Micro-Temperature Measurements on Semiconductor Laser Mirrors by Reflectance Modulation: A Newly Developed Technique for Laser Characterization,” Jpn. J. Appl. Phys., Part 1, 32, pp. 5514–5522.
Abid,  R., Miserey,  F., and Mezroua,  F.-Z., 1996, “Effet de la temperature sur la Reflectivite du Silicium Oxyde: Determination Experimentale de la Sensibilite Relative; Application a la Mesure sans Contact de la Temperature a la Surface d’un Thyristor GTO en Commutation,” Journal de Physics III, 6, pp. 279–300.
Ju,  Y. S., and Goodson,  K. E., 1998, “Short-Time-Scale Thermal Mapping of Microdevices using a Scanning Thermoreflectance Technique,” ASME J. Heat Transfer, 120, pp. 306–313.
Ju,  Y. S., and Goodson,  K. E., 1997, “Thermal Mapping of Interconnects Subjected to Brief Electrical Stresses,” IEEE Electron Device Lett., 18, pp. 512–514.
Decker, D. L., and Hodgkin, V. A., 1981, “Wavelength and Temperature Dependence of the Absolute Reflectance of Metals at Visible and Infrared Wavelengths,” in National Bureau of Standards Special Publication, NBS-SP-620, Washington, D.C.
Rosei,  R., and Lynch,  D. W., 1972, “Thermomodulation Spectra of Al, Au, and Cu,” Phys. Rev. B, 5, pp. 3883–3893.
Betzig,  E., and Trautman,  J. K., 1992, “Near-Field Optics: Microscopy, Spectroscopy, and Surface Modification Beyond the Diffraction Limit,” Science, 257, pp. 189–195.
Boudreau,  B. D., Raja,  J., Hocken,  R. J., Patterson,  S. R., and Patten,  J., 1997, “Thermal Imaging With Near-Field Microscopy,” Rev. Sci. Instrum., 68, pp. 3096–3098.
Goodson,  K. E., and Asheghi,  M., 1997, “Near-Field Optical Thermometry,” Microscale Thermophys. Eng., 1, pp. 225–235.
Bethe,  H. A., 1944, “Theory of Diffraction by Small Holes,” The Physical Review, 66, pp. 163–182.
Mansfield,  S. M., and Kino,  G. S., 1990, “Solid Immersion Microscope,” Appl. Phys. Lett., 57, pp. 2615–2616.
Terris,  B. D., Mamin,  H. J., Rugar,  D., Studenmund,  W. R., and Kino,  G. S., 1994, “Near-Field Optical-Data Storage Using a Solid Immersion Lens,” Appl. Phys. Lett., 65, pp. 388–390.
Ghislain,  L. P., Elings,  V. B., Crozier,  K. B., Manalis,  S. R., Minne,  S. C., Wilder,  K., Kino,  G. S., and Quate,  C. F., 1999, “Near-Field Photolithography with a Solid Immersion Lens,” Appl. Phys. Lett., 74, pp. 501–503.
Fletcher,  D. A., Crozier,  K. B., Quate,  C. F., Kino,  G. S., Goodson,  K. E., Simanovskii,  D., and Palanker,  D. V., 2000, “Near-Field Infrared Imaging with a Microfabricated Solid Immersion Lens,” Appl. Phys. Lett., 77, pp. 2109–2111.
Fletcher, D. A., 2001, “Near-Field Microscopy with a Microfabricated Solid Immersion Lens,” Ph.D. thesis, Department of Mechanical Engineering, Stanford University, Stanford, CA.
Goodson, K. E., and Ju, Y. S., 1999, “Heat Conduction in Novel Electronic Films,” Annual Review of Materials Science, E. N. Kaufmann et al., eds., Annual Reviews, Palo Alto, CA, Vol. 29, pp. 261–293.
Cahill,  D. G., 1997, “Heat Transport in Dielectric Thin-Films and at Solid-Solid Interfaces,” Microscale Thermophys. Eng., 1, pp. 85–109.
Chen,  G., and Neagu,  M., 1997, “Thermal Conductivity and Heat Transfer in Superlattices,” Appl. Phys. Lett., 71, pp. 2761–2763.
Hyldgaard,  P., and Mahan,  G. D., 1997, “Phonon Superlattice Transport,” Phys. Rev. B, 57, pp. 14958–14973.
Chen,  G., 1998, “Thermal-Conductivity and Ballistic-Phonon Transport in the Cross-Plane Direction of Superlattices,” Phys. Rev. B, 57, pp. 14958–14973.
Swartz,  E. T., and Pohl,  R. O., 1989, “Thermal Boundary Resistance,” Rev. Mod. Phys., 61, pp. 605–668.
Graebner,  J. E., 1993, “Thermal Conductivity of CVD Diamond: Techniques and Results,” Diamond Films Technol., 3, pp. 77–130.
Touzelbaev,  M. N., and Goodson,  K. E., 1998, “Applications of Micron-Scale Diamond Layers for the IC and MEMS Industries,” Diamond Relat. Mater., 7, pp. 1–14.
Kurabayashi,  K., Asheghi,  M., Touzelbaev,  M. N., and Goodson,  K. E., 1999, “Measurement of the Thermal Conductivity Anisotropy in Polyimide Films,” J. Microelectromech. Syst., 8, pp. 180–191.
Bauer,  S., and Dereggi,  A. S., 1996, “Pulsed Electrothermal Technique for Measuring the Thermal-Diffusivity of Dielectric Films on Conducting Substrates,” J. Appl. Phys., 80, pp. 6124–6128.
Rogers,  J. A., Yang,  Y., and Nelson,  K. A., 1994, “Elastic-Modulus and In-Plane Thermal Diffusivity Measurements in Thin Polyimide Films Using Symmetry-Selective Real-Time Impulsive Stimulated Thermal Scattering,” Appl. Phys. A: Solids Surf., 58, pp. 523–534.
Goodson,  K. E., and Flik,  M. I., 1994, “Solid-Layer Thermal Conductivity Measurement Techniques,” Appl. Mech. Rev., 47, pp. 101–112.
Cahill,  D. G., 1990, “Thermal Conductivity Measurement from 30-K to 750-K: The 3-Omega Method,” Rev. Sci. Instrum., 61, pp. 802–808.
Cahill,  D. G., and Allen,  T. H., 1994, “Thermal-Conductivity of Sputtered and Evaporated Sio2 and Tio2 Optical Coatings,” Appl. Phys. Lett., 65, pp. 309–311.
Lee,  S. M., and Cahill,  D. G., 1997, “Heat-Transport in Thin Dielectric Films,” J. Appl. Phys., 81, pp. 2590–2595.
BorcaTasciuc,  T., Liu,  W. L., Liu,  J. L., Zeng,  T. F., Song,  D. W., Moore,  C. D., Chen,  G., Wang,  K. L., Goorsky,  M. S., Radetic,  T., Gronsky,  R., Koga,  T., and Dresselhaus,  M. S., 2000, “Thermal Conductivity of Symmetrically Strained Si/Ge Superlattices,” Superlattices Microstruct., 28, pp. 199–206.
Ju,  Y. S., Kurabayashi,  K., and Goodson,  K. E., 1999, “Thermal Characterization of Anisotropic Thin Fielectric Films using Harmonic Joule Heating,” Thin Solid Films, 339, pp. 160–164.
Ju,  Y. S., and Goodson,  K. E., 1999, “Phonon Scattering in Silicon Films of Thickness below 100 nm,” Appl. Phys. Lett., 74, pp. 3005–3007.
Ju,  Y. S., and Goodson,  K. E., 1999, “Process-Dependent Thermal Transport Properties of Silicon Dioxide Films Deposited Using Low-Pressure Chemical Vapor Deposited,” J. Appl. Phys., 85, pp. 7130–7134.
Goodson,  K. E., Flik,  M. I., Su,  L. T., and Antoniadis,  D. A., 1994, “Prediction and Measurement of the Thermal Conductivity of Amorphous Dielectric Layers,” ASME J. Heat Transfer, 116, pp. 317–324.
Tai,  Y. C., Mastrangelo,  C. H., and Muller,  R. S., 1988, “Thermal-Conductivity of Heavily Doped Low-Pressure Chemical Vapor-Deposited Polycrystalline Silicon Films,” J. Appl. Phys., 63, pp. 1442–1447.
Paul,  O. M., Korvink,  J., and Baltes,  H., 1994, “Determination of the Thermal-Conductivity of Cmos IC Polysilicon,” Sens. Actuators A, 41, pp. 161–164.
Kaeding,  O. W., Skurk,  H., and Goodson,  K. E., 1993, “Thermal Conduction in Metallized Silicon-Dioxide Layers on Silicon,” Appl. Phys. Lett., 65, pp. 1629–1631.
Goodson,  K. E., Kaeding,  O. W., Roesler,  M., and Zachai,  M., 1995, “Experimental Investigation of Thermal Conduction normal to Diamond-Silicon Boundaries,” J. Appl. Phys., 77, pp. 1385–1392.
Kading,  O. W., Skurk,  H., Maznev,  A. A., and Matthias,  E., 1995, “Transient Thermal Gratings at Surfaces for Thermal Characterization of Bulk Materials and Thin-Films,” Appl. Phys. A: Mater. Sci. Process., 61, pp. 253–261.
Special Issue of IEEE Transactions on Electron Devices, 1998, Vol. 45.
Davis,  J. A., Venkatesan,  R., Kaloyeros,  A., Beylansky,  M., Souri,  S. J., Banerjee,  K., Saraswat,  K. C., Rahman,  A., Reif,  R., and Meindl,  J. D., 2001, “Interconnect Limits on Gigascale Integration (GSI) in the 21st Century,” Proc. IEEE, 89, pp. 305–324.
King,  W. P., Kenny,  T. W., Goodson,  K. E., Cross,  G., Despont,  M., Durig,  U., Rothuizen,  H., Binnig,  G. K., and Vettiger,  P., 2001, “Atomic Force Microscope Cantilevers for Combined Thermomechanical Data Writing and Reading,” Appl. Phys. Lett., 78, pp. 1300–1302.
Holland,  M. G., 1963, “Analysis of Lattice Thermal Conductivity,” Phys. Rev., 132, pp. 2461–2471.
Asheghi,  M., Touzelbaev,  M. N., Goodson,  K. E., Leung,  Y. K., and Wong,  S. S., 1998, “Temperature-Dependent Thermal Conductivity of Single-Crystal Silicon Layers in SOI Substrates,” ASME J. Heat Transfer, 120, pp. 30–36.
Asheghi, M., Kurabayashi, K., Goodson, K. E., Kasnavi, R., and Plummer, J. D., 1999, “Thermal Conduction in Doped Silicon Layers,” Proc. 33rd ASME/AIChE National Heat Transfer Conference, Albuquerque, NM, August 8–14.
Uher,  C., 1990, “Thermal Conductivity of High-Tc Superconductors,” J. Supercond., 3, pp. 337–389.
Richardson,  R. A., Peacor,  S. D., Uher,  C., and Nori,  F., 1992, “YBa2Cu3O7−δ Films: Calculation of the Thermal Conductivity and Phonon Mean Free Path,” J. Appl. Phys., 72, pp. 4788–4791.
Goodson,  K. E., and Flik,  M. I., 1993, “Electron and Phonon Thermal Conduction in Epitaxial High-Tc Superconducting Films,” ASME J. Heat Transfer, 115, pp. 17–25.
Chen, G., 1996, “Heat Transfer in Micro and Nanoscale Photonic Devices,” in Tien, C.-L., editor, Annual Review of Heat Transfer, pp. 1–57. Begell House, New York.
Mahan,  G. D., and Woods,  L. M., 1998, “Multilayer Thermionic Refrigeration,” Phys. Rev. Lett., 80, pp. 4016–4019.
Mahan, G. D., 1998, “Good Thermoelectrics,” in H. Ehrenreich and F. Spaepen, ed., Solid State Physics, Vol. 51, Academic Press, New York, pp. 81–157.
Cahill,  D. G., Bullen,  A., and Lee,  S.-M., 2000, “Interface Thermal Conductance and the Thermal Conductivity of Multilayer Thin Films,” High Temperatures High Pressures, 32, pp. 135–142.
Cahill, D. G., 1998, “Heat Transport in Dielectric Thin Films and at Solid-Solid Interfaces,” in C.-L. Tien, A. Majumdar, and F. M. Gerner, eds., Microscale Energy Transport, Taylor & Francis, Washington, DC, pp. 95–117.
Young,  D. A., and Maris,  H. J., 1989, “Lattice-Dynamical Calculations of the Kapitza Resistance Between FCC Lattices,” Phys. Rev. B, 40, pp. 3685–3693.
Pettersson,  S., and Mahan,  G. D., 1990, “Theory of the Thermal Boundary Resistance Between Dissimilar Lattices,” Phys. Rev. B, 42, pp. 7386–7390.
Sergeev,  A. V., 1998, “Electronic Kapitza Conductance Due to Inelastic Electron-Boundary Scattering,” Phys. Rev. B, 58, pp. R10199–10202.
Kechrakos,  D., 1991, “The Role of Interface Disorder in the Thermal Boundary Conductivity Between Two Crystals,” J. Phys.: Condens. Matter, 3, pp. 1443–1452.
Streib,  H. M., and Mahler,  G., 1987, “Lattice Theory of Ideal Hetero Structures: Influence of Interface Models on Phonon Propagation,” Z. Phys. B-Condensed Matter, 65, pp. 483–490.
Kim,  E.-K., Kwun,  S.-I., Lee,  S.-M., Seo,  H., and Yoon,  J.-G., 2000, “Thermal Boundary Resistance at Ge2Sb2Te5/ZnS:SiO2 Interface,” Appl. Phys. Lett., 76, pp. 3864–3866.
Cahill,  D. G., and Lee,  S.-M., 1997, “Influence of Interface Conductance on the Apparent Thermal Conductivity of Thin Films,” Microscale Thermophys. Eng., 1, pp. 47–52.
Lee,  S.-M., Matamis,  G., Cahill,  D. G., and Allen,  W. P., 1998, “Thin Film Materials and the Minimum Thermal Conductivity,” Microscale Thermophys. Eng., 2, pp. 31–36.
An,  K., Ravichandran,  K. S., Dutton,  R. E., and Semiatin,  S. L., 1999, “Microstructure, Texture, and Thermal Conductivity of Single-Layer and Multilayer Thermal Barrier Coatings of Y2O3-stabilized ZrO2 and Al2O3 Made by Physical Vapor Deposition,” J. Am. Ceram. Soc., 82, pp. 399–406.
Soyez,  G., Eastman,  J. A., Thompson,  L. J., Bai,  G.-R., Baldo,  P. M., McCormick,  A. W., DiMelfi,  R. J., Elmustafa,  A. A., Tambwe,  M. F., and Stone,  D. S., 2000, “Grain-Size-Dependent Thermal Conductivity of Nanocrystalline Yttria-Stabilized Zirconia Films Grown by Metal-Organic Chemical Vapor Deposition,” Appl. Phys. Lett., 77, pp. 1155–1157.
Hyldegaard,  P., and Mahan,  G. D., 1997, “Phonon Superlattice Transport,” Phys. Rev. B, 56, pp. 10754–10757.
Ichiro Tamura,  S., Tanaka,  Y., and Maris,  H. J., 1999, “Phonon Group Velocity and Thermal Conduction in Superlattices,” Phys. Rev. B, 60, pp. 2627–2630.
Kiselev,  A. A., Kim,  K. W., and Stroscio,  M. A., 2000, “Thermal Conductivity of Si/Ge Superlattices:A Realistic Model With a Diatomic Unit Cell,” Phys. Rev. B, 62, pp. 6896–6899.
Bies,  W. E., Radtke,  R. J., and Ehrenreich,  H., 2000, “Phonon Dispersion Effects and the Thermal Conductivity Reduction in GaAs/AlAs Superlattices,” J. Appl. Phys., 88, pp. 1498–1503.
Lee,  S.-M., Cahill,  D. G., and Venkatasubramanian,  R., 1997, “Thermal Conductivity of Si-Ge Superlattices,” Appl. Phys. Lett., 70, pp. 2957–2959.
Simkin,  M. V., and Mahan,  G. D., 2000, “Minimum Thermal Conductivity of Superlattices,” Phys. Rev. Lett., 84, pp. 927–930.
Afromowitz,  M. A., 1973, “Thermal Conductivity of GaAlAs Alloys,” J. Appl. Phys., 44, pp. 1292–1294.
Liu,  W. L., Borca-Tasciuc,  T., Chen,  G., Liu,  J. L., and Wang,  K. L., 2001, “Anisotropic Thermal Conductivity of Ge Quantum-Dot and Symmetrically Strained Si/Ge Superlattices,” J. Nanosci. Nanotech., 1, pp. 39–42.
VonArx,  M., Paul,  O., and Baltes,  H., 2000, “Process-Dependent thin-Film Thermal Conductivities for Thermal CMOS MEMS,” J. Microelectromech. Syst., 9, pp. 136–145.
Uma, S., McConnell, A. D., Asheghi, M., Kurabayashi, K., and Goodson, K. E., 2000, “Temperature Dependent Thermal Conductivity of Undoped Polycrystalline Silicon Layers,” Int. J. Thermophys., in press.
McConnell, A. D., Srinivasan, U., Asheghi, M., and Goodson, K. E., 2002, “Thermal Conductivity of Doped Polysilicon,” J. Microelectromech. Syst., in press.
Ziman, J. M., 1960, Electrons and Phonons, Oxford University Press, Oxford, United Kingdom.
Verhoeven,  H., Boettger,  E., Floter,  A., Reiss,  H., and Zachai,  R., 1997, “Thermal-Resistance and Electrical Insulation of Thin Low-Temperature-Deposited Diamond Films,” Diamond Relat. Mater., 6, pp. 298–302.
Goodson,  K. E., 1996, “Thermal Conduction in Nonhomogeneous CVD Diamond Layers in Electronic Microstructures,” ASME J. Heat Transfer, 118, pp. 279–286.
Goodson,  K. E., Flik,  M. I., Su,  L. T., and Antoniadis,  D. A., 1993, “Annealing-Temperature Dependence of the Thermal Conductivity of LPCVD Silicon-Dioxide Layers,” IEEE Electron Device Lett., 14, pp. 490–492.
Cahill,  D. G., Watson,  S. K., and Pohl,  R. O., 1992, “Lower Limit to the Thermal Conductivity of Disordered Crystals,” Phys. Rev. B, 36, pp. 6131–6140.
Alivisatos,  A. P., 1996, “Semiconductor Clusters, Nanocrystals, and Quantum Dots,” Science, 271, pp. 933–936.
Duan,  X., and Lieber,  C. M., 2000, “General Synthesis of Compound Semiconductor Nanowires,” Adv. Mater., 12, pp. 298–302.
Morales,  A. M., and Lieber,  C. M., 1998, “A Laser Ablation Method for the Synthesis of Crystalline Semiconductor Nanowires,” Science, 279, pp. 208–211.
Yiying,  W., and Yang,  P., 2000, “Germanium/Carbon Core-Sheath Nanostructures,” Appl. Phys. Lett., 77, pp. 43–45.
Cui,  Y., Lauhon,  L. J., Gudiksen,  M. S., Wang,  J. F., and Lieber,  C. M., 2001, “Diameter-Controlled Synthesis of Single-Crystal Silicon Nanowires,” Appl. Phys. Lett., 78, pp. 2214–2216.
Cui,  Y., and Lieber,  C. M., 2001, “Functional Nanoscale Electronic Devices Assembled Using Silicon Nanowire Building Blocks,” Science, 291, pp. 851–853.
Lin,  Y. M., Cronin,  S. B., Ying,  J. Y., Dresselhaus,  M. S., and Heremans,  J. P., 2000, “Transport Properties of Bi Nanowire Arrays,” Appl. Phys. Lett., 76, pp. 3944–3946.
Chung,  S. W., Yu,  J. W., and Heath,  J. R., 2000, “Silicon Nanowire Devices,” Appl. Phys. Lett., 76, pp. 2068–2070.
Zhang,  Z. B., Sun,  X. Z., Dresselhaus,  M. S., Ying,  J. Y., and Heremans,  J., 2000, “Electronic Transport Properties of Single-Crystal Bismuth Nanowire Arrays,” Phys. Rev. B, 61, pp. 4850–4861.
Schwab,  K., Henriksen,  E. A., Worlock,  J. M., and Roukes,  M. L., 2000, “Measurement of Quantum Conductance of Thermal Conductance,” Nature (London), 404, pp. 974–977.
Santamore,  D. H., and Cross,  M. C., 2001, “Effect of Phonon Scattering by Surface Roughness on Universal Thermal Conductance,” Phys. Rev. Lett., 87, pp. U84–U86.
Volz,  S., and Lemonnier,  D., 2000, “Confined Phonon and Size Effects on Nanowire Thermal Conductivity. The Radiative Transfer Approach,” Phys. Low-Dimensional Structures, 5–6, pp. 91–107.
Zou,  J., and Balandin,  A., 2001, “Phonon Heat Conduction in a Semiconductor Nanowire,” J. Appl. Phys., 89, pp. 2932–2938.
Hone,  J., Whitney,  M., Piskoti,  C., and Zettl,  A., 1999, “Thermal Conductivity of Single-Walled Carbon Nanotubes,” Phys. Rev. B, 59, pp. R2514–R2516.
Berber,  S., Kwon,  Y.-K., and Tomanek,  D., 2000, “Unusually High Thermal Conductivity of Carbon Nanotubes,” Phys. Rev. Lett., 84, pp. 4613–4616.
Kim,  P., Shi,  L., Majumdar,  A., and McEuen,  P., 2001, “Thermal Transport Measurements of Individual Multiwall Carbon Nanotubes,” Phys. Rev. Lett., 87, pp. 215502 (1–4).
Borca-Tasciuc, T., Achimov, D., Liu, W. L., Chen, G., Ren, H.-W., Lin, C.-H., and Pei, S. S., 2001, “Thermal Conductivity of InAs/AlSb superlattices,” Microscale Thermophys. Eng., 6 , in press.


Grahic Jump Location
Cantilever deflection and temperature response of the probe as a function of sample vertical position. The sample was a 350 nm wide electrically heated metal line. When the sample approaches the tip, the cantilever deflection remains unchanged till a jump to contact. During this time, the tip temperature rises very gradually due to air conduction. Corresponding to jump to contact the tip temperature suddenly rises due to liquid conduction. As the sample is pushed up the cantilever deflects linearly, while the tip temperature increases linearly due to increase in solid-solid contact area to a certain constant value. When the sample is retracted away, the solid-solid conductance decreases, but at a different rate, indicating some hysteresis due to plastic deformation of the tip or the sample. The tip remains in contact for a longer duration due to surface tension forces. When the tip snaps out of contact from the sample, there is a sudden drop in temperature due to loss of liquid film conduction.
Grahic Jump Location
(left) Schematic diagram, (middle) topographical image, and (right) thermal image of the cross-section of a vertical cavity laser. The region imaged is approximately 6 μm on either side of the active quantum well region, which includes the p-doped and n-doped Bragg mirrors consisting of alternating layers of AlAs and AlGaAs. The thermal image was obtained after a current was applied and the device was lasing.
Grahic Jump Location
Topographical and thermal images of electrically heated: (a) multiwall carbon nanotube (MWCN) about 10 nm in diameter with 22.4 μA flowing through it; (b) single wall carbon nanotube (SWCN) 1-2 nm in diameter with 15 μA (top) and 19.3 μA flowing through it. The temperature profile of the MWCN is parabolic in nature indicating a diffusive flow of electrons. At low bias, the SWCN is heated only at the contacts suggesting ballistic flow, while at higher bias the SWCN is heated in the bulk, most likely due to optical phonon emission. All measurements were made at room temperature.
Grahic Jump Location
Picosecond thermoreflectance and acoustics apparatus at the University of Illinois using a single objective and an integrated dark-field microscope. The pump and probe beams are parallel at the back-focal-plane of the objective lens but offset by ≈ 4 mm. The aperture in front of the detector rejects the small fraction of pump beam that leaks through the polarizing beam splitter.
Grahic Jump Location
Picosecond thermoreflectance data (solid circles) for thermal transport through an epitaxial TiN/MgO(001) structure at room temperature. The ratio of the in-phase to out-of-phase signals of the lock-in amplifier at f=9.8 MHz is plotted as function of the thermal diffusion length in TiN; the delay time t is given on the top axis. The TiN layer thickness is 100 nm. We assume that the thermal conductivity of the TiN film is given by the Wiedemann-Franz law, Λ=LT/ρ=58 W m−1 K−1; the thermal conductivity of MgO is 51 W m−1 K−1 . The solid and dashed lines are fits to the data using Eq. 3 with one free parameter, the interface thermal conductance G. The solid line is the best fit, G=0.42 GW m−2 K−1. The upper and lower dashed lines are for G=0.2 and G=1.0 GW m−2 K−1, respectively.
Grahic Jump Location
Electron micrographs of novel electronic films and devices: (a) Diamond passivation film on aluminum. Diamond films are promising for enhanced heat removal from power integrated circuits and for fast thermal sensors. (b) Transmission electron micrograph of a VLSI metal-silicon contact, which has failed during a current pulse of sub-microsecond duration. The temperature rise is strongly influenced by the properties of the surrounding passive material.
Grahic Jump Location
Electron micrographs of (left) an array of vertical cavity surface emitting lasers (VCSEL) on a single wafer and (right) the cross of an individual VCSEL. Each laser contains multiple layers of III–V semiconductor materials which are approximately 60–100 nm in the Bragg mirrors of the laser or 1–10 nm in the active quantum well region.
Grahic Jump Location
Electron micrographs of (left) an array of SiGe superlattice thermionic microcoolers on a single wafer and (right) the cross section of a single device showing the SiGe/Si superlattice structure. The superlattice period is approximately 10 nm.
Grahic Jump Location
Schematic diagram of a scanning thermal microscope (SThM). It consists of a sharp temperature sensing tip mounted on a cantilever probe. The sample is scanned in the lateral directions while the canitilever deflections are monitored using a laser beam-deflection technique. Topographical and thermal images can be thermally obtained. The thermal transport at the tip-sample contacts consists of air, liquid and solid-solid conduction pathways. A simple thermal resistance network model of the sample and probe combination shows that when the sample is at temperature Ts, the tip temperature Tt depends on the values of the thermal resistances of the tip-sample contact, Rts, the tip, Rt, and the cantilever probe, Rc.
Grahic Jump Location
Electron micrographs of a two-armed cantilever probe with a pyramid-shaped tip at the free end. The tip contains a Pt-Cr thermocouple junction at its apex which is approximately 500 nm in lateral size.
Grahic Jump Location
(a) Schematic of the setup for scanning laser-reflectance imaging of interconnects and semiconductor devices; (b) experimental data for the temperature distribution across the corner of an electrically heated metal intercorrect.
Grahic Jump Location
(a) Relationship of the transmittance and spatial resolution of optical imaging technologies, showing the promise of the solid immersion lens for thermal imaging. The curve plots the sixth power dependence of transmittance on diameter for a circular aperature. (b) Scanning electron micrograph of the silicon lens and tip and the pyrex mount. (c) Transmission data collected by an InSb CCD array through a patterned two-bridge structure with and without the SIL.
Grahic Jump Location
(a) Data for bulk silicon compared with data for silicon single-crystal films and polysilicon. (b) Predictions and data for single-crystal silicon films of thickness down to 74 nm at room temperature as a function of film thickness. (c) Contributions to the thermal resistivity, 1/k, as a function of temperature for a doped polysilicon layer.
Grahic Jump Location
Comparison of selected data for interface thermal conductance: (i) individual interfaces measured by picosecond thermoreflectance 52, Al/Al2O3 (open diamonds) and Pb/c-C (filled triangles); (ii) conductance of the a-GeSbTe2.5/ZnS interface (open triangles) from a multilayer sample 129, (iii) series conductance of the top and bottom interfaces of metal-SiO2-silicon structures (MOS, filled circles) 99. The solid line is the calculated diffuse mismatch conductance of Al/Al2O3 using the Debye model; the dashed line is the theoretical prediction for Al/Al2O3 using a lattice-dynamical calculation of a model fcc interface 52. The right axis gives the thickness of a film with Λ=1 W m−1 K−1 that has the thermal conductance corresponding to the left axis.
Grahic Jump Location
Selected data for the through-thickness thermal conductivity of superlattices with bilayer periods of ≈ 5 nm; data for GaAs-AlAs (open circles, 5.67 nm period 54) were measured by picosecond thermoreflectance; data for Si-Ge (open triangles, 5 nm period 142; filled circles, 4.4 nm period 104) and InAs-AlSb (open diamonds, 6.5 nm period 164) were measured using the 3ω method. Data for Si0.85Ge0.15142 and Ga0.4Al0.6As144 alloys are included for comparison.
Grahic Jump Location
The sketches indicate the impact of grain and molecular orientation on the anisotropy
Grahic Jump Location
Electron micrograph of the suspended heater structure used for measuring thermal conductivity of nanowires. Also laid across the heater is a multiwall carbon nanotube bundle 150 nm in diameter. The Pt heater coil on one of the suspended islands is heated and its temperature is measured by resistance thermometry. The temperature of the other island increases due to conduction through the nanowire, which is also measured by resistance thermometry. The temperature difference for a known heat flow rate from the heated island can be used to estimate the thermal conductivity of the nanowire.
Grahic Jump Location
Temperature dependence of thermal conductivity of a multiwall carbon nanotube. The dashed line corresponds to a T2 temperature dependence. The thermal conductivity is about 3000 W/m-K at room temperature, which includes the contact resistances at the two islands.



Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related Journal Articles
Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In