0
REVIEW PAPERS

Heat Transfer in Nanostructures for Solid-State Energy Conversion

[+] Author and Article Information
G. Chen

Mechanical Engineering Department, Massachusetts Institute of Technology, Cambridge, MA 02139

A. Shakouri

Jack Baskin School of Engineering, University of California, Santa Cruz, CA 95064-1077

J. Heat Transfer 124(2), 242-252 (Nov 20, 2001) (11 pages) doi:10.1115/1.1448331 History: Received July 24, 2001; Revised November 20, 2001
Copyright © 2002 by ASME
Your Session has timed out. Please sign back in to continue.

References

Goldsmid, H. J., 1964, Thermoelectric Refrigeration, Plenum Press, New York.
Rowe, D. M., ed., 1995, Handbook of Thermoelectrics, CRC Press, Boca Raton.
Ioffe, A. F., 1957, Semiconductor Thermoelements and Thermoelectric Cooling, Infosearch Limited, London.
Tritt, T. M., ed., 2001, “Recent Trend in Thermoelectric Materials Research,” in Semiconductors and Semimetals, Vol. 69-Vol. 71, Academic Press, San Diego.
Hicks,  L. D., and Dresselhaus,  M. S., 1993, “Effect of Quantum-Well Structures on the Thermoelectric Figure of Merit,” Phys. Rev. B, 47, pp. 12727–12731.
Dresselhaus,  M. S., Lin,  Y. M., Cronin,  S. B., Rabin,  O., Black,  M. R., Dresselhaus,  G., and Koga,  T., 2001, “Quantum Wells and Quantum Wires for Potential Thermoelectric Applications,” in Semicond. Semimetals, 71, pp. 1–121.
Shakouri,  A., and Bowers,  J. E., 1997, “Heterostructure Integrated Thermionic Coolers,” Appl. Phys. Lett., 71, pp. 1234–1236.
Mahan,  G. D., 2001, “Thermionic Refrigeration,” Semicond. Semimetals, 71, pp. 157–174.
Venkatasubramanian,  R., 2001, “Phonon Blocking Electron Transmitting Superlattice Structures as Advanced Thin Film Thermoelectric Materials,” Semicond. Semimetals, 71, pp. 175–201.
Chen,  G., 2001, “Phonon Transport in Low-Dimensional Structures,” Semicond. Semimetals, 71, pp. 203–259.
Harman,  T. C., Taylor,  P. J., Spears,  D. L., and Walsh,  M. P., 2000, “Thermoelectric Quantum-Dot Superlattices with High ZT,” J. Electron. Mater., 29, pp. L1–L4.
Dubios, L., 1999, “An Introduction to the DARPA Program in Advanced Thermoelectric Materials and Devices,” Proc. Int. Conf. Thermoelectrics, ICT’99, pp. 1–4.
Aschroft, N. W., and Mermin, N. D., 1976, Solid State Physics, Saunders College Publishing, Fort Worth.
Mahan,  G. D., and Sofo,  J. O., 1996, “The Best Thermoelectric,” Proc. Natl. Acad. Sci. U.S.A., 93, pp. 7436–7439.
Sun, X., Cronin, S. B., Liu, J. L., Wang, K. L., Koga, T., Dresselhaus, M. S., and Chen, G., 1999, “Experimental Study of the Effect of the Quantum Well Structures on the Thermoelectric Figure of Merit in Si/SixGel-x System,” Proceedings of Int. Conf. Thermoelectrics, ICT’99, pp. 652–655.
Broido,  D. A., and Reinecke,  T. L., 1995, “Effect of Superlattice Structure on the Thermoelectric Figure of Merit,” Phys. Rev. B, 51, pp. 13797–13800.
Sofo,  J. O., and Mahan,  G. D., 1994, “Thermoelectric Figure of Merit of Superlattices,” Appl. Phys. Lett., 65, pp. 2690–2692.
Koga,  T., Sun,  X., Cronin,  S. B., and Dresselhaus,  M. S., 1998, “Carrier Pocket Engineering to Design Superior Thermoelectric Materials Using GaAs/AlAs Superlattices,” Appl. Phys. Lett., 73, pp. 2950–2952.
Koga,  T., Cronin,  S. B., Dresselhaus,  M. S., Liu,  J. L., and Wang,  K. L., 2000, “Experimental Proof-of-Principle Investigation of Enhanced Z3DT in (001) Oriented Si/Ge Superlattices,” Appl. Phys. Lett., 77, pp. 1490–1492.
Chen,  G., 1997, “Size and Interface Effects on Thermal Conductivity of Superlattices and Periodic Thin-Film Structures,” ASME J. Heat Transfer , 119, pp. 220–229 (see also Proc. 1996 Nat. Heat Transf. Conf., ASME HTD-Vol. 323, 121 , 1996).
Hicks,  L. D., Harman,  T. C., and Dresselhaus,  M. S., 1996, “Experimental Study of the Effect of Quantum-Well Structures on the Thermoelectric Figure of Merit,” Phys. Rev. B, 53, pp. 10493–10496.
Harman,  T. C., Taylor,  P. J., Spears,  D. L., and Walsh,  M. P., 2000, “Thermoelectric Quantum-Dot Superlattices With High ZT,” J. Electron. Mater., 29, pp. L1–L4.
Whitlow,  L. W., and Hirano,  T., 1995, “Superlattice Application to Thermoelectricity,” J. Appl. Phys., 78, pp. 5460–5466.
Radtke,  R. J., Ehrenreich,  H., and Grein,  C. H., 1999, “Multilayer Thermoelectric Refrigeration in Hg1−xCdxTe Superlattices,” J. Appl. Phys., 86, pp. 3195–3198.
Kumar, R., Borca-Tasciuc, D., Zeng, T., and Chen, G., 2000, “Thermal Conductivity of Nanochanneled Alumina,” Proc. Int. Mech. Eng. Congress and Exhibition (IMECE2000), ASME HTD-Vol. 366-2, pp. 393–398.
Zhang,  Z. B., Gekhtman,  D., Dresselhaus,  M. S., and Ying,  J. Y., 1999, “Processing and Characterization of Single-Crystalline Ultrafine Bismuth Nanowires,” Chem. Mater., 11, pp. 1659–1665.
Heremans,  J., Thrush,  C. M., Lin,  Y. M., Cronin,  S., and Dresselhaus,  M. S., 2000, “Bismuth Nanowire Arrays: Synthesis and Galvanomagnetic Properties,” Phys. Rev. B, 61, pp. 2921–2930.
Behnke, J. F., Prieto, A. L., Stacy, A. M., and Sands, T., 1999, “Electrodeposition of CoSb3 Nanowires,” ICT’99 pp. 451–453.
Hatsopoulos,  G. N., and Kaye,  J., 1958, “Measured Thermal Efficiencies of a Diode Configuration of a Thermo Electron Engine,” J. Appl. Phys., 29, pp. 1124–1125.
Mahan,  G. D., 1994, “Thermionic Refrigeration,” J. Appl. Phys., 76, pp. 4362–4366.
Mahan,  G. D., and Woods,  L. M., 1998, “Multilayer Thermionic Refrigeration,” Phys. Rev. Lett., 80, pp. 4016–4019.
Shakouri,  A., Lee,  E. Y., Smith,  D. L., Narayanamurti,  V., and Bowers,  J. E., 1998, “Thermoelectric Effects in Submicron Heterostructure Barriers,” Microscale Thermophys. Eng., 2, pp. 37–42.
Moyzhes,  B., and Nemchinsky,  V., 1998, “Thermoelectric Figure of Merit of Metal-Semiconductor Barrier Structure based on Energy Relaxation Length,” Appl. Phys. Lett., 73, pp. 1895–1897.
Miskovsky,  N. M., and Cutler,  P. H., 1999, “Microelectronic Cooling Using the Nottingham Effect and Internal Field Emission in a Diamond (Wide-Band Gap Material) Thin-Film Device,” Appl. Phys. Lett., 75, pp. 2147–2149.
Korotkov,  A. N., and Likharev,  K. K., 1999, “Possible Cooling by Resonant Fowler-Nordheim Emission,” Appl. Phys. Lett., 75, pp. 2491–2493.
Shakouri,  A., Labounty,  C., Abraham,  P., Piprek,  J., and Bowers,  J. E., 1998, “Enhanced Thermionic Emission Cooling in High Barrier Superlattice Heterostructures,” Mater. Res. Soc. Symp. Proc., 545, pp. 449–458.
Shakouri,  A., LaBounty,  C., Piprek,  J., Abraham,  P., and Bowers,  J. E., 1999, “Thermionic Emission Cooling in Single Barrier Heterostructures,” Appl. Phys. Lett., 74, pp. 88–89.
Zeng,  G. H., Shakouri,  A., La Bounty,  C., Robinson,  G., Croke,  E., Abraham,  P., Fan,  X. F., Reese,  H., and Bowers,  J. E., 1999, “SiGe Micro-Cooler,” Electron. Lett., 35, pp. 2146–2147.
Fan,  X. F., Zeng,  G. H., LaBounty,  C., Bowers,  J. E., Croke,  E., Ahn,  C. C., Huxtable,  S., Majumdar,  A., and Shakouri,  A., 2001, “SiGeC/Si Superlattice Microcoolers,” Appl. Phys. Lett., 78, pp. 1580–1582.
Fan,  X. F., Zeng,  G., Croke,  E., LaBounty,  C., Ahn,  C. C., Vashaee,  D., Shakouri,  A., and Bowers,  J. E., 2001, “High Cooling Power Density SiGe/Si Micro-Coolers,” Electron. Lett., 37, pp. 126–127.
LaBounty,  C., Shakouri,  A., Abraham,  P., and Bowers,  J. E., 2000, “Monolithic Integration of Thin-Film Coolers with Optoelectronic Devices,” Opt. Eng., 39, pp. 2847–2852.
LaBounty,  C., Shakouri,  A., and Bowers,  J. E., 2001, “Design and Characterization of Thin Film Microcoolers,” J. Appl. Phys., 89, pp. 4059–4064.
Zeng, G., Fan, X., LaBounty, C., Bowers, J. E., Croke, E., and Shakouri, A., “Direct Measurements of Cooling Power Density for SiGe/Si Superlattice Microcoolers,” submitted for publication.
Zeng,  T. F., and Chen,  G., 2000, “Energy Conversion in Heterostructures for Thermionic Cooling,” Microscale Thermophys. Eng., 4, pp. 39–50.
Reggiani, L., ed., 1985, Hot-Electron Transport in Semiconductors, Springer-Verlag.
Qiu,  T. Q., and Tien,  C. L., 1993, “Heat Transfer Mechanisms During Short-Pulse Laser Heating of Metals,” ASME J. Heat Transfer , 115, pp. 835–841.
Zeng, T. F., and Chen, G., 2000, “Nonequilibrium Nonequilibrium Electron and Phonon Transport in Heterostructures for Energy Conversion,” Proceedings of Int. Mech. Eng. Congress and Exhibition (IMECE2000), ASME HTD-Vol. 366-2, pp. 361–372.
Vashaee, D., and Shakouri, A., 2002, unpublished.
Nolas,  G. S., Slack,  G. A., Morelli,  D. T., Tritt,  T. M., and Ehrlich,  A. C., 1996, “The Effect of Rare-Earth Filling on the Lattice Thermal Conductivity of Skutterudites,” J. Appl. Phys., 79, pp. 4002–4008.
Casimir,  H. B. G., 1938, “Note on the Conduction of Heat in Crystals,” Physica, 5, pp. 495–500.
Venkatasubramanian,  R., 1996, “Thin-Film Superlattice and Quantum-Well Structures—A New Approach to High-Performance Thermoelectric Materials,” Nav. Res. Rev., 58, pp. 44–54.
Yao,  T., 1987, “Thermal Properties of AlAs/GaAs Superlattices,” Appl. Phys. Lett., 51, pp. 1798–1800.
Chen,  G., Tien,  C. L., Wu,  X., and Smith,  J. S., 1994, “Measurement of Thermal Diffusivity of GaAs/AlGaAs Thin-Film Structures,” ASME J. Heat Transfer , 116, pp. 325–331.
Tien,  C. L., and Chen,  G., 1994, “Challenges in Microscale Conductive and Radiative Heat Transfer,” ASME J. Heat Transfer , 116, pp. 799–807.
Yu,  X. Y., Chen,  G., Verma,  A., and Smith,  J. S., 1995, “Temperature Dependence of Thermophysical Properties of GaAs/AlAs Periodic Structure,” Appl. Phys. Lett. 67, pp. 3554–3556, p. 1303.
Capsinski,  W. S., and Maris,  H. J., 1996, “Thermal Conductivity of GaAs/AlAs Superlattices,” Physica B, 220, pp. 699–701.
Lee,  S. M., Cahill,  D. G., and Venkatasubramanian,  R., 1997, “Thermal Conductivity of Si-Ge Superlattices,” Appl. Phys. Lett., 70, pp. 2957–2959.
Yamasaki, I., Yamanaka, R., Mikami, M., Sonobe, H., Mori, Y., and Sasaki, T., 1998, “Thermoelectric Properties of Bi2Te3/Sb2Te3 Superlattice Structures,” Proc. Int. Conf. Thermoelectrics, ICT’98, pp. 210–213.
Capinski,  W. S., Maris,  H. J., Ruf,  T., Cardona,  M., Ploog,  K., and Katzer,  D. S., 1999, “Thermal-Conductivity Measurements of GaAs/AlAs Superlattices Using a Picosecond Optical Pump-and-Probe Technique,” Phys. Rev. B, 59, pp. 8105–8113.
Borca-Tasciuc,  T., Liu,  W. L., Zeng,  T., Song,  D. W., Moore,  C. D., Chen,  G., Wang,  K. L., Goorsky,  M. S., Radetic,  T., Gronsky,  R., Koga,  T., and Dresselhaus,  M. S., 2000, “Thermal Conductivity of Symmetrically Strained Si/Ge Superlattices,” Superlattices Microstruct., 28, pp. 119–206.
Song,  D. W., Liu,  W. L., Zeng,  T., Borca-Tasciuc,  T., Chen,  G., Caylor,  C., and Sands,  T. D., 2000, “Thermal Conductivity of Skutterudite Thin Films and Superlattices,” Appl. Phys. Lett., 77, pp. 3854–3856.
Venkatasubramanian,  R., 2000, “Lattice Thermal Conductivity Reduction and Phonon Localizationlike Behavior in Superlattice Structures,” Phys. Rev. B, 61, pp. 3091–3097.
Huxtable,  S. T., Shakouri,  A., LaBounty,  C., Fan,  X., Abraham,  P., Chiu,  Y. J., Chiu,  Y. J., and Majumdar,  A., 2000, “Thermal Conductivity of Indium Phosphide-Based Superlattices,” Microscale Thermophys. Eng., 4, pp. 197–203.
Borca-Tasciuc,  T., Achimov,  D., Liu,  W. L., Chen,  G., Ren,  H.-W., Lin,  C.-H., and Pei,  S. S., 2001, “Thermal Conductivity of InAs/AlSb Superlattices,” Microscale Thermophys. Eng., 5, pp. 225–231.
Liu,  W. L., Borca-Tasciuc,  T., Chen,  G., Liu,  J. L., and Wang,  K. L., 2001, “Anisotropy Thermal Conductivity of Ge-Quantum Dot and Symmetrically Strained Si/Ge Superlattice,” J. Nanosci. Nanotech., 1, pp. 39–42.
Narayanamurti,  V., Stormer,  J. L., Chin,  M. A., Gossard,  A. C., and Wiegmann,  W., 1979, “Selective Transmission of High-Frequency Phonons by a Superlattice: the Dielectric Phonon Filter,” Phys. Rev. Lett., 43, pp. 2012–2015.
Ren,  S. Y., and Dow,  J., 1982, “Thermal Conductivity of Superlattices,” Phys. Rev. B, 25, pp. 3750–3755.
Chen,  G., 1997, “Size and Interface Effects on Thermal Conductivity of Superlattices and Periodic Thin-Film Structures,” ASME J. Heat Transfer, 119, pp. 220–229.
Hyldgaard,  P., and Mahan,  G. D., 1996, “Phonon Knudson Flow in Superlattices,” Therm. Conduct., 23, p. 172–181.
Chen,  G., and Neagu,  M., 1997, “Thermal Conductivity and Heat Transfer in Superlattices,” Appl. Phys. Lett., 71, pp. 2761–2763.
Chen,  G., 1998, “Thermal Conductivity and Ballistic Phonon Transport in Cross-Plane Direction of Superlattices,” Phys. Rev. B, 57, pp. 14958–14973.
Hyldgaard,  P., and Mahan,  G. D., 1997, “Phonon Superlattice Transport,” Phys. Rev. B, 56, pp. 10754–10757.
Tamura,  S., Tanaka,  Y., and Maris,  H. J., 1999, “Phonon Group Velocity and Thermal Conduction in Superlattices,” Phys. Rev. B, 60, pp. 2627–2630.
Bies,  W. E., Radtke,  R. J., and Ehrenreich,  H., 2000, “Phonon Dispersion Effects and the Thermal Conductivity Reduction in GaAs/AlAs Superlattices,” J. Appl. Phys., 88, pp. 1498–1503.
Kiselev,  A. A., Kim,  K. W., and Stroscio,  M. A., 2000, “Thermal Conductivity of Si/Ge Superlattices: A Realistic Model with a Diatomic Unit Cell,” Phys. Rev. B, 62, pp. 6896–6899.
Yang,  B., and Chen,  G., 2001, “Anisotropy of Heat Conduction in Superlattices,” Microscale Thermophys. Eng., 5, pp. 107–116.
Volz,  S. G., Saulnier,  J. B., Chen,  G., and Beauchamp,  P., 2000, “Computation of Thermal Conductivity of Si/Ge Superlattices by Molecular Dynamics Techniques,” Microelectronics J., 31, pp. 815–819.
Liang,  X. G., and Shi,  B., 2000, “Two-Dimensional Molecular Dynamics Simulation of the Thermal Conductance of Superlattices with Lennard-Jones Potential,” Mater. Sci. Eng., 292, pp. 198–202.
Chen,  G., 1999, “Phonon Wave Heat Conduction in Thin Films and Superlattices,” ASME J. Heat Transfer , 121, pp. 945–953.
Balandin,  A., and Wang,  K. L., 1998, “Effect of Phonon Confinement on the Thermoelectric Figure of Merit of Quantum Wells,” J. Appl. Phys., 84, pp. 6149–6153.
Ju,  Y. S., and Goodson,  K. E., 1999, “Phonon Scattering in Silicon Films with Thickness of Order 100 nm,” Appl. Phys. Lett., 74, pp. 3005–3007.
Ziman, J. M., 1960, Electrons and Phonons, Clarendon Press, Oxford.
Venkatasubramian, R., Siivola, E., and Colpitts, T. S., 1998, “In-Plane Thermoelectric Properties of Freestanding Si/Ge Superlattice Structures,” Proc. Int. Conf. Thermoelectrics, ICT’98, pp. 191–197.
Simkin,  M. V., and Mahan,  G. D., 2000, “Minimum Thermal Conductivity of Superlattices,” Phys. Rev. Lett., 84, pp. 927–930.
Arutyunyan,  L. I., Bogomolov,  V. N., Kartenko,  N. F., Kurdyukov,  D. A., Popov,  V. V., Prokof’ev,  A. V., Smirnov,  I. A., and Sharenkova,  N. V., 1997, “Thermal Conductivity of a New Type of Regular-Structure Nanocomposites: PbSe in Opal Pores,” Phys. Solid State, 39, pp. 510–514.
Song, D. W., Shen, W.-N., Zeng, T., Liu, W. L., Chen, G., Dunn, B., Moore, C. D., Goorsky, M. S., Radetic, R., and Gronsky, R., 1999, “Thermal Conductivity of Nano-Porous Bismuth Thin Films for Thermoelectric Applications,” ASME HTD-Vol. 364-1, pp. 339–344.
Volz,  S. G., and Chen,  G., 1999, “Molecular Dynamics Simulation of Thermal Conductivity of Si Nanowires,” Appl. Phys. Lett., 75, pp. 2056–2058.
Walkauskas,  S. G., Broido,  D. A., Kempa,  K., and Reinecke,  T. L., 1999, “Lattice Thermal Conductivity of Wires,” J. Appl. Phys., 85, pp. 2579–2582.
Kim,  P., Shi,  L., Majumadar,  A., and McEuen,  P. L., 2001, “Thermal Transport Measurements on Individual Multi-walled Nanotubes,” Phys. Rev. Lett., 87, p. 215502.
Cahill,  D. G., 1990, “Thermal Conductivity Measurement from 30-K to 750-K—The 3-Omega Method,” Rev. Sci. Instrum., 61, pp. 802–808.
Lee,  S. M., and Cahill,  D. G., 1997, “Heat Transport in Thin Dielectric Films,” J. Appl. Phys., 81, pp. 2590–2595.
Borca-Tasciuc,  T., Kumar,  R., and Chen,  G., 2001, “Data Reduction in 3ω Method for Thin Film Thermal Conductivity Measurements,” Rev. Sci. Instrum., 72, pp. 2139–2147.
Cahill,  D. G., Fischer,  H. E., Klitsner,  T., Swartz,  E. T., and Pohl,  R. O., 1989, “Thermal Conductivity of Thin Films: Measurement and Understanding,” J. Vac. Sci. Technol. A, A7, pp. 1259–1266.
Hatta,  I., 1990, “Thermal Diffusivity Measurement of Thin Films and Multilayered Composites,” Int. J. Thermophys., 11, pp. 293–303.
Volklein, F., and Starz, T., 1997, “Thermal Conductivity of Thin Films—Experimental Methods and Theoretical Interpretation,” Proc. Int. Conf. Thermoelectrics, ICT’97, pp. 711–718.
Goodson,  K. E., and Ju,  Y. S., 1999, “Heat Conduction in Novel Electronic Films,” Annu. Rev. Mater. Sci., 29, pp. 261–293.
Yang, B., Liu, J. L., Wang, K. L., and Chen, G., 2002, “Simultaneous Measurements of Seebeck Coefficient and Thermal Conductivity Across Superlattices,” Appl. Phys. Lett., in press.
Fleurial, J.-P., Snyder, G. J., Herman, J. A., Giauque, P. H., et al. 1999, “Thick-Film Thermoelectric Microdevices,” Proc. Int. Conf. Thermoelectrics, ICT’99, pp. 294–300.
Kishi, M., Yoshida, Y., Okano, H., Nemoto, H., Funanami, Y., Yamamoto, M., and Kanazawa, H., 1997, “Fabrication of a Miniature Thermoelectric Module with Elements Composed of Sintered Bi-Te Compounds,” Proc. Int. Conf. Thermoelectrics, ICT’97, pp. 653–656.
Rushing, L., Shakouri, A., Abraham, P., and Bowers, J. E., 1997, “Micro Thermoelectric Coolers for Integrated Applications,” Proc. Int. Conf. Thermoelectrics, ICT’97, pp. 646–649.
Volklein, F., Blumers, M., and Schmitt, L., “Thermoelectric Microsensors and Microactuators (MEMS) Fabricated by Thin Film Technology and Micromachining,” Proc. Int. Conf. Thermoelectrics, ICT’99, pp. 285–293.
Yao, D.-J., Kim, C.-J., and Chen, G., 2002, “Design of Thermoelectric Thin Film Coolers,” ASME HTD-Vol. 366-2, pp. 245–251.
Dutta,  N. K., Cella,  T., Brown,  R. L., and Huo,  D. T. C., 1985, “Monolithically Integrated Thermoelectric Controlled Laser Diode,” Appl. Phys. Lett., 47, pp. 222–224.
Chen,  G., 1996, “Heat Transfer in Micro- and Nanoscale Photonic Devices,” Annu. Rev. Heat Transfer, 7, pp. 1–57.
Piprek,  J., Akulova,  Y. A., Babic,  D. I., Coldren,  L. A., and Bowers,  J. E., 1998, “Minimum Temperature Sensitivity of 1.55 μm Vertical-Cavity Lasers at 30 nm Gain Offset,” Appl. Phys. Lett., 72, pp. 1814–1816.
Berger,  P. R., Dutta,  N. K., Choquette,  K. D., Hasnain,  G., and Chand,  N., 1991, “Monolithically Peltier-Cooled Vertical-Cavity Surface-Emitting Lasers,” Appl. Phys. Lett., 59, pp. 117–119.
Corser, T. A., 1991, “Qualification and Reliability of Thermoelectric Coolers for Use in Laser Modules,” 41st Electronic Components and Technology Conference, Atlanta, GA, USA, May, pp. 150–156.
Cheng, Y.-K., Tsai, C.-H., Teng, C.-C., and Kang, S.-M., 2000, Electrothermal Analysis of VLSI Systems, Kluwer Academic Publishers.
Kishi, M., Nemoto, H., Hamao, T., Yamamoto, M., Sudou, S., Mandai, M., and Yamamoto, S., 1999, “Micro Thermoelectric Modules and Their Application to Wristwatches as an Energy Source,” Proc. Int. Conf. Thermoelectrics, ICT’99, pp. 301–307.

Figures

Grahic Jump Location
Illustration of thermoelectric devices (a) cooler, (b) power generator, and (c) an actual device
Grahic Jump Location
Comparison of thermoelectric technology with other energy conversion methods for (a) cooling and (b) power generation
Grahic Jump Location
Schematic illustration of the density-of-states of electrons in bulk, quantum well, quantum wire, and quantum dots materials.
Grahic Jump Location
Product of the Seebeck coefficient square and carrier density as a function of the silicon quantum well width 15
Grahic Jump Location
Heterostructure thermionic emission for cooling at room temperatures.
Grahic Jump Location
(a) TEM image of the SiGe/Si superlattice (the dark parts are the 12 nm Si0.75Ge0.25 layers, the light parts are the 3 nm Si layers), and (b) a scanning electron micrograph of a fabricated micro refrigerator
Grahic Jump Location
Cooling measured on 60×60 μm2 SiGe/Si superlattice coolers and on Si coolers at the heat sink temperature of 25°C
Grahic Jump Location
Temperature distribution on top of a 40×40 micron square SiGe thin film cooler measured using thermoreflectance imaging. The applied current is ∼400 mA.
Grahic Jump Location
Distribution of (a) Fermi level and (b) electron and phonon temperature inside double heterojunction structures. The dimensionless coordinate is normalized to the film thickness. ξh is the electron or phonon mean free path divided by the film thickness, nd the carrier concentration and ϕb the barrier height.
Grahic Jump Location
Anisotropic thermal conductivity of the strained Si/Ge (20 Å /20 Å) superlattice: experimental data were fitted using Chen’s models 6871. Also shown in the figure are comparisons of experimental data experimental data with predictions of Fourier theory based on bulk properties of each layer, and with compositionally equivalent alloy (300K) 65.

Tables

Errata

Discussions

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related Journal Articles
Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In