Plasma Absorption of Femtosecond Laser Pulses in Dielectrics

[+] Author and Article Information
C. H. Fan, J. Sun, J. P. Longtin

Department of Mechanical Engineering, State University of New York at Stony Brook, Stony Brook, NY 11794-2300

J. Heat Transfer 124(2), 275-283 (Oct 22, 2001) (9 pages) doi:10.1115/1.1445135 History: Received May 02, 2001; Revised October 22, 2001
Copyright © 2002 by ASME
Your Session has timed out. Please sign back in to continue.


Liu,  X., Du,  D., and Mourou,  G., 1997, “Laser Ablation and Micromachining With Ultrashort Laser Pulses,” IEEE J. Quantum Electron., 33, pp. 1706–1716.
Noack,  J., and Vogel,  A., 1999, “Laser-Induced Plasma Formation in Water at Nanosecond to Femtosecond Time Scales: Calculation of Thresholds, Absorption Coefficients, and Energy Density,” IEEE J. Quantum Electron., 35, pp. 1156–1167.
Kennedy,  P. K., Hammer,  D. X., and Rockwell,  B. A., 1997, “Laser-Induced Breakdown in Aqueous Media,” Prog. Quantum Electron., 21, pp. 155–248.
Nikogosyan,  D. N., Oraevsky,  A. A., and Rupasov,  V. I., 1983, “2 Photon Ionization and Dissociation of Liquid Water by Powerful Laser UV Radiation,” Chem. Phys., 77, pp. 131–143.
Du,  D., Liu,  X., and Mourou,  G., 1996, “Reduction of Multi-Photon Ionization in Dielectrics Due to Collisions,” Appl. Phys. B, 63, pp. 617–621.
Shen, Y. R., 1984, The Principles of Nonlinear Optics, John Wiley & Sons, Inc., New York.
Feng,  Q., Moloney,  J. V., Newell,  A. C., Wright,  E. M., Cook,  K., Kennedy,  P. K., Hammer,  D. X., Rockwell,  B. A., and Thompson,  C. R., 1997, “Theory and Simulation on the Threshold of Water Breakdown Induced by Focused Ultrashort Laser Pulses,” IEEE J. Quantum Electron., 33, pp. 127–137.
Korte,  F., Nolte,  S., Chichkov,  B. N., Bauer,  T., Kamlage,  G., Wagner,  T., Fallnich,  C., and Welling,  H., 1999, “Far-Field and Near-Field Material Processing with Femtosecond Laser Pulses,” Appl. Phys. A, 69, pp. S7–S11.
Docchio,  F., Regondi,  P., Capon,  M. R. C., and Mellerio,  J., 1988, “Study of the Temporal and Spatial Dynamics of Plasmas Induced in Liquids by Nanosecond Nd:YAG Laser Pulses. 1. Analysis of the Plasma Starting Times,” Appl. Opt., 27, pp. 3661–3668.
Docchio,  F., Regondi,  P., Capon,  M. R. C., and Mellerio,  J., 1988, “Study of the Temporal and Spatial Dynamics of Plasmas Induced in Liquids by Nanosecond Nd:YAG Laser-Pulses. 2. Plasma Luminescence and Shielding,” Appl. Opt., 27, pp. 3669–3674.
Fan,  C. H., and Longtin,  J. P., 2001, “Modeling Optical Breakdown in Dielectrics during Ultrafast Laser Processing,” Appl. Opt., 40, pp. 3124–3131.
Siegman, A. E., 1986, Lasers, University Science Books, Sausalito, CA.
Nahen,  K., and Vogel,  A., 1996, “Plasma Formation in Water by Picosecond and Nanosecond Nd:YAG Laser Pulses—Part II: Transmission, Scattering, and Reflection,” IEEE J. Sel. Top. Quantum Electron., 2, pp. 861–871.
Vogel,  A., Nahen,  K., Theisen,  D., and Noack,  J., 1996, “Plasma Formation in Water by Picosecond and Nanosecond Nd:YAG Laser Pulses—Part I: Optical Breakdown at Threshold and Superthreshold Irradiance,” IEEE J. Sel. Top. Quantum Electron., 2, pp. 847–860.
Raizer,  Y. P., 1966, “Breakdown and Heating of Gases Under the Influence of a Laser Beam,” Sov. Phys. Usp, 8, pp. 650–673.
Hammer,  D. X., Jansen,  E. D., Frenz,  M., Noojin,  G. D., Thomas,  R. J., Noack,  J., Vogel,  A., Rockwell,  B. A., and Welch,  A. J., 1997, “Shielding Properties of Laser-Induced Breakdown in Water for Pulse Durations from 5 ns to 125 fs,” Appl. Opt., 36, pp. 5630–5640.
Perry,  M. D., Stuart,  B. C., Banks,  P. S., Feit,  M. D., Yanovsky,  V., and Rubenchik,  A. M., 1999, “Ultrashort-Pulse Laser Machining of Dielectric Materials,” J. Appl. Phys., 85, pp. 6803–6810.
Stuart,  B. C., Feit,  M. D., Herman,  S., Rubenchik,  A. M., Shore,  B. W., and Perry,  M. D., 1996, “Optical Ablation by High-Power Short-Pulse Lasers,” J. Opt. Soc. Am. B, 13, pp. 459–468.
Kennedy,  P. K., 1995, “A First-Order Model for Computation of Laser-Induced Breakdown Thresholds in Ocular and Aqueous Media. 1. Theory,” IEEE J. Quantum Electron., 31, pp. 2241–2249.
Rae,  S. C., and Burnett,  K., 1992, “Possible Production of Cold Plasmas Through Optical-Field-Induced Ionization,” Phys. Rev. A 46, pp. 2077–2083.
Stone,  J., 1972, “Measurements of the Absorption of Light in Low-Loss Liquids,” J. Opt. Soc. Am., 62, pp. 327–333.
Longtin,  J. P., and Tien,  C. L., 1997, “Efficient Laser Heating of Transparent Liquids Using Multiphoton Absorption,” Int. J. Heat Mass Transf., 40, pp. 951–959.
Longtin,  J. P., 1999, “Using Multiphoton Absorption With High-Intensity Lasers to Heat Transparent Liquids,” Chem. Eng. Technol., 22, pp. 77–80.
Fan, C. H., Sun, J., and Longtin, J. P., “Time and Space-Resolved Plasma Absorption of a Femtosecond Laser Pulse in Dielectrics,” 35th National Heat Transfer Conference, Anaheim, CA, NHTC01-11222.
Wang,  L. J., Kuzmich,  A., and Dogariu,  A., 2000, “Gain-Assisted Superluminal Light Propagation,” Nature (London), 406, pp. 277–279.


Grahic Jump Location
Time-dependent breakdown region induced by long laser pulses
Grahic Jump Location
Pulse propagation and corresponding plasma absorption region: (a) intensity increase as beam diameter decreases near focal region; and (b) power variation and plasma formation region
Grahic Jump Location
Schematic of a Gaussian pulse composed of pulse strips
Grahic Jump Location
Plasma formation location versus formation time
Grahic Jump Location
Time-dependent pulse profile with plasma absorption in water (τp=300 fs): (a) t=tF0, (b) t=tF0+5τp, (c) t=tF0+10τp, and (d) t=−t0.
Grahic Jump Location
Time-dependent transmission for different β(τp=300 fs)




Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related Journal Articles
Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In