Stagnation Line Heat Transfer Augmentation Due to Freestream Vortical Structures and Vorticity

[+] Author and Article Information
Aung N. Oo, Chan Y. Ching

Department of Mechanical Engineering, McMaster University, Hamilton, Ontario, L8S 4L7, Canada

J. Heat Transfer 124(3), 583-587 (May 10, 2002) (5 pages) doi:10.1115/1.1471526 History: Received September 01, 2001; Revised February 01, 2002; Online May 10, 2002
Copyright © 2002 by ASME
Your Session has timed out. Please sign back in to continue.


Smith,  M. C., and Kuethe,  A. M., 1966, “Effects of Turbulence on Laminar Skin Friction and Heat Transfer,” Phys. Fluids, 9(12), pp. 2337–2344.
Kestin,  J., and Wood,  R. T., 1971, “The Influence of Turbulence on Mass Transfer from Cylinders,” ASME J. Heat Transfer, 93C, pp. 321–327.
Lowery,  G. W., and Vachon,  R. I., 1975, “Effect of Turbulence on Heat Transfer from Heated Cylinders,” Int. J. Heat Mass Transf., 18(11), pp. 1229–1242.
O’Brien, J. E., and VanFossen, G. J., 1985, “The Influence of Jet-Grid Turbulence on Heat Transfer from the Stagnation Region of a Cylinder in Crossflow,” ASME Paper 85-HT-58.
Mehendale,  A. B., Han,  J. C., and Ou,  S., 1991, “Influence of High Mainstream Turbulence on Leading Edge Heat Transfer,” ASME J. Heat Transfer, 113, pp. 843–850.
Yeh, F. C., Hippensteele, S. A., VanFossen, G. J., Poinsatte, P. E., and Ameri, A. 1993, “High Reynolds Number and Turbulence Effects on Aerodynamics and Heat Transfer in a Turbine Cascade,” Paper No. AIAA-93-2252.
VanFossen,  G. J., Simoneau,  R. J., and Ching,  C. Y., 1995, “Influence of Turbulence Parameters, Reynolds Number and Body Shape on Stagnation Region Heat Transfer,” ASME J. Heat Transfer, 117, pp. 597–603.
Oo,  A. N., and Ching,  C. Y., 2001, “Effect of Turbulence with Different Vortical Structures on Stagnation Region Heat Transfer,” ASME J. Heat Transfer, 123, pp. 665–674.
Tennekes, H., and Lumley, J. L., 1972, A First Course in Turbulence, The MIT Press, The Massachusetts Institute of Technology.
Foss, J. F., and Haw, R. C., 1990, “Transverse Vorticity Measurements Using a Compact Array of Four Sensors,” The Heuristics of Thermal Anemometry, D. E. Stock, S. A. Sherif, and A. J. Smits, eds., ASME-FED 97, pp. 71–76.
Antonia,  R. A., Browne,  L. W. B., and Shah,  D. A., 1988, “Characteristics of Vorticity Fluctuation in a Turbulent Wake,” J. Fluid Mech., 189, pp. 349–365.
Yavuzkurt,  S., 1984, “A Guide to Uncertainty Analysis of Hot-Wire Data,” ASME J. Fluids Eng., 106, pp. 181–186.
Zhou,  T., and Antonia,  R. A., 2000, “Reynolds Number Dependence of the Small-Scale Structure of Grid Turbulence,” J. Fluid Mech., 406, pp. 81–107.
Moffat,  R. J., 1988, “Describing the Uncertainties in Experimental Results,” Exp. Therm. Fluid Sci., 1, pp. 3–17.


Grahic Jump Location
RMS fluctuating vorticity components of grids in perpendicular orientation for ReD=108,350 (2.86 cm rod-grid: ⋄, ωz; □, ωy; 1.59 cm rod-grid: ▵, ωz; ×, ωy; 0.95 cm rod-grid: ○, ωz; +, ωy)
Grahic Jump Location
Streamwise trends of the degree of isotropy (rod-grids of: —, 2.86 cm; -—-, 1.59 cm; ---, 0.95 cm)
Grahic Jump Location
Stagnation line Fr versus correlation parameter proposed by VanFossen et al. 7 (perpendicular Rod-grids: ⋄, 2.86 cm; ▵, 1.59 cm; * , 0.95 cm; parallel rod-grids: □, 2.86 cm; ○, 1.59 cm; +, 0.95 cm; correlation lines: —, VanFossen et al. 7; –-–, +4%; ---, −4%)
Grahic Jump Location
Stagnation line Fr versus correlation parameter with spanwise vorticity and velocity fluctuations for both grid orientations (⋄, data, correlation lines: —, Eq. (5); ---, +4%; -⋅-⋅, −4%)




Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related Journal Articles
Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In