Faraday,
M., 1847, “On the Diamagnetic Conditions of Flame and Gases,” Philos. Mag., 31(210), pp. 401–421.

Pauling,
L., Wood,
R. E., and Sturdivant,
J. H., 1946, “An Instrument for Determining the Partial Pressure of Oxygen in a Gas,” J. Am. Chem. Soc., 68, pp. 795–798.

Braithwaite,
D., Beaugnon,
E., and Tournier,
R., 1991, “Magnetically Controlled Convection in a Paramagnetic Fluid,” Nature (London), 354, pp. 134–136.

Silveston,
P. L., 1958, “Wämedurchgang in waagerechten Flussigkeitsschichten,” Part 1, Forsch, Ing. Wes., 24, pp. 29–32 and pp. 59–69.

Wakayama,
N. I., 1991, “Behavior of Flow Under Gradient Magnetic Fields,” J. Appl. Phys., 69(4), pp. 2734–2736.

Wakayama,
N. I., 1991, “Effect of a Decreasing Magnetic Field on the Flow of Nitrogen Gas,” Chem. Phys. Lett., 185(5-6), pp. 449–451.

Wakayama,
N. I., 1993, “Magnetic Promotion of Combustion in Diffusion Flames,” Combust. Flame, 93(3), pp. 207–214.

Wakayama,
N. I., Ito,
H., Kuroda,
Y., Fujita,
O., and Ito,
K., 1996, “Magnetic Support of Combustion in Diffusion Flames Under Micro Gravity,” Combust. Flame, 107(1-2), pp. 187–192.

Bai,
B., Yabe,
A., Qi,
J., and Wakayama,
N. I., 1999, “Quantitative Analysis of Air Convection Caused by Magnetic-Fluid Coupling,” AIAA J., 37(12), pp. 1538–1543.

Ikezoe,
Y., Hirota,
N., Nakagawa,
J., and Kitazawa,
K., 1998, “Making Water Levitate,” Nature (London), 393, pp. 749–750.

Ikezoe,
Y., Hirota,
N., Sakihama,
T., Mogi,
K., Uetake,
H., Homma,
T., Nakagawa,
J., Sugawara,
H., and Kitazawa,
K., 1998, “Acceleration Effect on the Rate of Dissolution of Oxygen in a Magnetic Field,” (Japanese), Journal of Japan Institute of Applied Magnetics, 22(4-2), pp. 821–824.

Uetake,
H., Nakagawa,
J., Hirota,
N., and Kitazawa,
K., 1999, “Nonmechanical Magnetothermal Wind Blower by a Superconducting Magnet,” J. Appl. Phys., 85(8), pp. 5735–5737.

Nakagawa,
J., Hirota,
N., Kitazawa,
K., and Shoda,
M., 1999, “Magnetic Field Enhancement of Water Vaporization,” J. Appl. Phys., 86(5), pp. 2923–2925.

Ozoe,
H., and Churchill,
S. W., 1973, “Hydrodynamic Stability and Natural Convection in Newtonian and Non-Newtonian Fluids Heated From Below,” AIChE Symp. Ser., 69(131), pp. 126–133.

Tagawa,
T., Shigemitsu,
R., and Ozoe,
H., 2002, “Magnetizing Force Modeled and Numerically Solved for Natural Convection of Air in a Cubic Enclosure: Effect of the Direction of the Magnetic Field,” Int. J. Heat Mass Transf., 45, pp. 267–277.

Kaneda,
M., Tagawa,
T., and Ozoe,
H., 2002, “Convection Induced by a Cusp-Shaped Magnetic Field for Air in a Cube Heated From Above and Cooled From Below,” ASME J. Heat Transfer, 124, pp. 17–25.

Hellums,
J. D., and Churchill,
S. W., 1964, “Simplification of the Mathematical Description of Boundary and Initial Value Problem,” AIChE J., 10, pp. 110–114.

Hirt, C. W., Nichols, B. D., and Romero, N. C., 1975, “A Numerical Solution Algorithm for Transient Fluid Flows,” Los Alamos Scientific Laboratory, LA-5852.

Yamanaka,
Y., Kakimoto,
K., Ozoe,
H., and Churchill,
S. W., 1998, “Rayleigh-Benard Oscillatory Natural Convection of Liquid Gallium Heated From Below,” Chem. Eng. J., 71(3), pp. 201–206.

Hatanaka, M., Tagawa, T., and Ozoe, H., 2000, “Numerical Computation of Oscillatory Rayleigh-Benard Natural Convection of Gallium in a Rectangular Region With Aspect Ratios Equal to Five,” *Proc. of Symposium on Energy Engineering in the 21st century (SEE 2000)*, Hong Kong, 1 , pp. 288–294.