TECHNICAL PAPERS: Heat Transfer Enhancement

Condensation Heat Transfer on Enhanced Surface Tubes: Experimental Results and Predictive Theory

[+] Author and Article Information
M. Belghazi, C. Marvillet

Groupement pour la Recherche sur les Echangeurs Thermiques (GRETh), CEA Grenoble, 17, avenue des martyrs, 38054 Grenoble cedex 9, France

A. Bontemps

Laboratoire des Ecoulements Géophysiques et Industriels (LEGI/GRETh), Université Joseph Fourier, Grenoble, France, CEA Grenoble, 17, avenue des martyrs, 38054 Grenoble cedex 9, Francee-mail: andre.bontemps@cea.fr

J. Heat Transfer 124(4), 754-761 (Jul 16, 2002) (8 pages) doi:10.1115/1.1459728 History: Received January 25, 2001; Revised October 30, 2001; Online July 16, 2002
Copyright © 2002 by ASME
Your Session has timed out. Please sign back in to continue.


Beatty,  K. O., and Katz,  D. L., 1948, “Condensation of Vapors on Outside of Finned Tubes,” Chem. Eng. Prog., 44, pp. 55–77.
Karkhu,  V. A., and Borovkov,  V. P., 1971, “Film Condensation of Vapor at Finely Finned Horizontal Tubes,” Heat Transfer-Sov. Res., 3(2), pp. 183–191.
Webb,  R. L., Rudy,  T. M., and Kedzierski,  M. A., 1985, “Prediction of Condensation Coefficient on Horizontal Integral-Fin Tubes,” ASME J. Heat Transfer, 107, pp. 369–376.
Honda,  H., and Nozu,  S., 1987, “A Prediction Method for Heat Transfer During Film Condensation on Horizontal Low Integral-Fin Tubes,” ASME J. Heat Transfer, 109, pp. 218–225.
Adamek,  T., and Webb,  R. L., 1990, “Prediction of Film Condensation on Horizontal Integral-Fin Tubes,” Int. J. Heat Mass Transf., 33(8), pp. 1721–1735.
Rose,  J. W., 1994, “An Approximation Equation for the Vapor-Side Heat-Transfer Coefficient for Condensation on Low-Finned Tubes,” Int. J. Heat Mass Transf., 37, pp. 865–875.
Sreepathi,  L. K., Bapat,  S. L., and Sukhatme,  S. P., 1996, “Heat Transfer During Film Condensation of R-123 Vapor on Horizontal Integral-Fin Tubes,” Journal of Enhanced Heat Transfer, 3(2), pp. 147–164.
Gregorig,  R., 1954, “Film Condensation on Finely Rippled Surfaces with Consideration of Surface Tension,” Z. Angew. Math. Phys., 5, pp. 36–49.
Adamek,  T., 1981, “Bestimmung der Kondensation-grossen auf Feingewellten Oberflachenzur Auslegun Optimaler Wandprofile,” Waerme- Stoffuebertrag., 15, pp. 255–270.
Zhu,  H.-R., and Honda,  H., 1993, “Optimization of Fin Geometry of a Horizontal Low-Finned Condenser Tube,” Heat Transfer-Jpn. Res., 22(4), pp. 372–386.
Honda,  H., and Kim,  K., 1995, “Effect of Fin Geometry on the Condensation Heat Transfer Performance of a Bundle of Horizontal Low-Finned Tubes,” J. Enhanced Heat Transfer, 2(1–2), pp. 139–147.
Honda,  H., and Makishi,  O., 1995, “Effect of Circumferential Rib on Film Condensation on a Horizontal Two-Dimensional Fin Tube,” J. Enhanced Heat Transfer, 2(4), pp. 307–315.
Webb, R. L. Keswani, S. T., and Rudy, T. M., 1982, “Investigation of Surface Tension and Gravity Effects in Film Condensation,” Proc. Int. Heat Transfer Conf., Washington, 5 , pp. 175–180.
Honda,  H., Uchima,  B., Nozu,  S., Nakada,  H., and Torigoe,  E., 1991, “Film Condensation of R-113 on In-Line Bundles of Horizontal Finned Tubes,” ASME J. Heat Transfer, 133(2), pp. 479–486.
Honda,  H., Uchima,  B., Nozu,  S., Torigoe,  E., and Imai,  S., 1992, “Film Condensation of R-113 on Staggered Bundles of Horizontal Finned Tubes,” ASME J. Heat Transfer, 114(2), pp. 442–449.
Wang, S. P., Hijikata, K., and Deng, S. J., 1990, “Experimental Study on Condensation Heat Transfer Enhancement by Various Kinds of Integral Finned Tubes,” Condensers and Condensation, Proc. 2nd Int. Symp., pp. xv–xxiii.
Webb,  R. L., and Murawski,  C. G., 1990, “Row Effect for R-11 Condensation on Enhanced Tubes,” ASME J. Heat Trasfer, 112, pp. 768–775.
Blanc, P., Bontemps, A., and Marvillet, C., 1994, “Condensation Heat Transfer of HCFC22 and HFC134a Outside a Bundle of Horizontal low Finned Tubes,” Proc. Symp. CFC’s, The Day After, Padova, Italy, pp. 635–642.
Honda, H., Takamatsu, H., Takada, N., and Yamasaki, T., 1995, “Condensation of HFC 134a and HFC 123 in a Staggered Bundle of Horizontal Finned Tubes,” Proc. Eurotherm No. 47, Heat Transfer in Condensation, pp. 110–115, Paris.
Cheng,  W. Y., and Wang,  C., 1994, “Condensation of R-134a on Enhanced Tubes,” ASHRAE Trans., 10(1), pp. 809–817.
Agrawal, K. N., Moharty, P., Kumar, R., and Varma, H. K., 1999, “Enhancement of Heat Transfer Rates During Condensation of Refrigerants Over Horizontal Finned Tubes,” Proc. Symp. Two Phase Flow Modelling and Experimentation, 1 , pp. 505–510.
Hijikata,  K., and Himeno,  N., 1990, “Condensation of Azeotropic and Nonazeotropic Binary Vapor Mixtures,” Annu. Rev. Heat Transfer, 3, Chap. 2, pp. 39–83.
Honda,  H., Takuma,  M., and Takada,  N., 1999, “Condensation of Downward-Flowing Zeotropic Mixture HFC-123/HFC-134a on a Staggered Bundle of Horizontal Low-Finned Tubes,” ASME J. Heat Transfer, 121, pp. 405–412.
Belghazi,  M., Bontemps,  A., Signe,  J. C., and Marvillet,  C., 2001, “Condensation Heat Transfer of a Pure Fluid and Binary Mixture outside a Bundle of Smooth Horizontal Tubes. Comparison of Experimental Results and a Classical Model,” Int. J. Refrig., 24(8), pp. 841–855.
Gnielinski,  V., 1976, “New Equation for Heat and Mass Transfer in Turbulent Pipe and Channel Flow,” Int. Chem. Eng., 16(2), pp. 359–368.
Wilson,  E. E., 1915, “A Basis for Rational Design of Heat Transfer Apparatus,” Trans. ASME, 37, pp. 47–70.
Moffat,  R. J., 1988, “Describing the Uncertainties in Experimental Results,” Exp. Therm. Fluid Sci., 1, pp. 3–17.
Signe, J. C., 1999, “Condensation de Mélanges Non Azéotropes de Fluides Frigorigènes à l’Extérieur d’un Faisceau de Tubes Horizontaux,” Ph.D. thesis, Université Joseph Fourier, Grenoble, France.
Belghazi, M., 2001, “Condensation d’un fluide pur et de mélanges zéotropes à l’extérieur d’un faisceau de tubes à surface améliorée,” Ph.D. thesis, Université Joseph Fourier, Grenoble, France.
Rudy,  T. M., and Webb,  R. L., 1985, “An Analytical Model to Predict Condensate Retention on Horizontal Integral-Fin Tubes,” ASME J. Heat Transfer, 107, pp. 361–368.


Grahic Jump Location
Optical microscope view of a notched fin tube (Gewa C+)
Grahic Jump Location
Heat transfer coefficient of the first row during condensation of HFC134a
Grahic Jump Location
Evolution of the Gewa C+ HTC along the bundle during condensation of HFC 134a
Grahic Jump Location
Evolution of mixture HTC on Gewa C+ and K19 tubes
Grahic Jump Location
Flooding of fins by the gaseous diffusion layer
Grahic Jump Location
Evolution of the ratio αjl as a function of the row number
Grahic Jump Location
Experimental and predicted HTC during condensation of HFC 134a on Gewa C+ and K32 tubes
Grahic Jump Location
The shape of the Gewa C+ tube. Definitions of parameters used
Grahic Jump Location
Variation of the vapor interface radius




Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related Journal Articles
Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In