0
TECHNICAL PAPERS: Conduction

Optimum Design of Spacecraft Radiators With Longitudinal Rectangular and Triangular Fins

[+] Author and Article Information
Rizos N. Krikkis

Institute of Chemical Engineering and High Temperature Chemical Processes, P.O. Box 1414, Stadiou St., Platani, 26 500 Patras, Greece

Panagiotis Razelos

College of Staten Island, CUNY, NY

J. Heat Transfer 124(5), 805-811 (Sep 11, 2002) (7 pages) doi:10.1115/1.1497359 History: Received December 20, 2001; Revised May 23, 2002; Online September 11, 2002
Copyright © 2002 by ASME
Your Session has timed out. Please sign back in to continue.

References

Bartas,  J. G., and Sellers,  W. H., 1960, “Radiation Fin Effectiveness,” ASME J. Heat Transfer, 82, pp. 73–75.
Kern, D. Q., and Kraus, A. D., 1972, Extended Surface Heat Transfer, McGraw-Hill, New York.
Liu,  C. Y., 1960, “On Minimum Weight Rectangular Radiating Fins,” J. Aerosp. Sci., 27, p. 871.
Liu,  C. Y., 1961, “On Optimum Rectangular Cooling Fins,” Q. Appl. Math., 19, p. 72.
Wilkins,  J. E., 1960, “Minimizing the Mass of Thin Radiating Fins,” J. Aerosp. Sci., 27, pp. 145.
Chung, B. T. F., and Nguyen, L. D., 1986, “Optimization of Design Parameters for Radiating Longitudinal Fins of Various Geometries,” 24th AIAA Aerospace Sciences Meeting, Reno, NV, Paper AIAA-86-0150.
Chung,  B. T. F., and Zhang,  B. X., 1991, “Minimum Mass Longitudinal Fins with Radiation Interaction at the Base,” J. Franklin Inst. 328(1), pp. 143–161.
Chung,  B. T. F., and Zhang,  B. X., 1991, “Optimization of Radiating Fin Array Including Mutual Irradiations Between Radiator Elements,” ASME J. Heat Transfer, 113, pp. 814–822.
Chung,  B. T. F., Zhang,  B. X., and Lee,  E. T., 1996, “A Multi-Objective Optimization of Radiative Fin Array Systems in a Fuzzy Environment,” ASME J. Heat Transfer, 118, pp. 642–649.
Krishnaprakas,  C. K., 1996, “Optimum Design of Radiating Rectangular Plate Fin Array Extending From a Plane Wall,” ASME J. Heat Transfer, 118, pp. 490–493.
Krishnaprakas,  C. K., 1997, “Optimum Design of Radiating Longitudinal Fin Array Extending From a Cylindrical Surface,” ASME J. Heat Transfer, 119, pp. 857–860.
Sunil,  Kumar S., Venketesh,  Nayak, and Venkateshan,  S. P., 1992, “Optimum Finned Space Radiators,” Int. J. Heat Fluid Flow, 14(2), pp. 191–200.
Ramesh,  N., and Venkateshan,  S. P., 1997, “Optimum Finned Tubular Space Radiator,” Heat Transfer Eng., 18(4), pp. 69–87.
Schnurr,  E. M., Shapiro,  A. B., and Townsend,  M. A., 1976, “Optimization of Radiating Fin Arrays With Respect to Weight,” ASME J. Heat Transfer, 98, pp. 643–648.
Aziz,  A., and Kraus,  A. D., 1996, “Optimum Design of Radiating and Convective-Radiating Fins,” Heat Transfer Eng., 17(3), pp. 44–78.
Razelos,  P., and Krikkis,  R. N., 2001, “Optimum Design of Longitudinal Rectangular Fins with Base to Fin Radiant Interaction,” Heat Transfer Eng., 22(3), pp. 3–17.
Razelos,  P., and Georgiou,  E., 1992, “Two-Dimensional Effects and Design Criteria for Convective Extended Surfaces,” Heat Transfer Eng., 13(3), pp. 38–48.
Sparrow,  E. M., Eckert,  E. R. G., and Irvine,  T. F., 1961, “The Effectiveness of Radiating Fins with Mutual Irradiation,” J. Aerosp. Sci., 28, pp. 763–778.
Karlekar,  B. V., and Chao,  B. T., 1963, “Mass Minimization of Radiating Trapezoidal Fins with Negligible Base Cylinder Interaction,” Int. J. Heat Mass Transf., 6, pp. 33–48.
Razelos,  P., and Imre,  K., 1980, “The Optimum Dimensions of Circular Fins with Variable Thermal Parameters,” ASME J. Heat Transfer, 102, pp. 420–425.
IMSL, Inc., 1991, IMSL Library Reference Manual, Houston, TX.
Razelos,  P., 1979, “The Optimization of Convective Fins with Internal Heat Generation,” Nucl. Eng. Des., 52(2), pp. 289–299.
Razelos,  P., and Kakatsios,  X. K., 2000, “Optimum Dimensions of Convective-Radiating Fins: Part I—Longitudinal Fins,” Appl. Therm. Eng., 20(13), pp. 1161–1192.
Modest, M. F., 1993, Radiative Heat Transfer, McGraw-Hill, New York.
Ascher, U. M., Mattheij, R. M. M., and Russel, R. D., 1995, Numerical Solution of Boundary Value Problems for Ordinary Differential Equations, 2nd ed., SIAM, Philadelphia, PA.
Keller, H. B., 1992, Numerical Methods for Two-Point Boundary-Value Problems, Dover, New York.
Papakostas, S. N., Tsitouras, Ch., and Papageorgiou, G., 1993, “A General Family of Explicit Runge-Kutta Pairs of Order 6 and 5,” National Technical University of Athens, Report NA-1/93.
Tsitouras,  Ch., and Papageorgiou,  G., 1990, “Runge-Kutta Interpolants Based on Values from Two Successive Integration Steps,” Computing,43, pp. 255–266.
Shampine,  L. F., 1973, “Local Extrapolation in the Solution of Ordinary Differential Equations,” Math. Comput., 27, pp. 91–97.
Atkinson, K. E., 1976, ACM TOMS, Vol. 2, pp. 196–199.
Atkinson, K. E., 1997, The Numerical Solution of Integral Equations of the Second Kind, Cambridge University Press, New York.
Kraus, A. D., Aziz, A., and Welty, J., 2001, Extended Surface Heat Transfer, John Wiley, New York.

Figures

Grahic Jump Location
(a) Schematic tubular space radiator; and (b) longitudinal fin geometry
Grahic Jump Location
Optimum parameter εuopt2 as a function of the opening angle for various emissivities and rectangular profile
Grahic Jump Location
ε−1/2Dopt versus the opening angle for various emissivities and rectangular profile
Grahic Jump Location
Optimum parameter εuopt2 as a function of the opening angle for various emissivities and triangular profile
Grahic Jump Location
ε−1/2Dopt versus the opening angle for various emissivities and triangular profile

Tables

Errata

Discussions

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related Journal Articles
Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In