0
TECHNICAL PAPERS: Evaporative Boiling and Condensation

Investigation of Circumferential Variation of Heat Transfer Coefficients During In-Tube Evaporation for R-22 and R-407C Using Liquid Crystal

[+] Author and Article Information
Seok Ho Yoon, Min Soo Kim

School of Mechanical and Aerospace Engineering, Seoul National University, Seoul 151-742, Korea

J. Heat Transfer 124(5), 845-853 (Sep 11, 2002) (9 pages) doi:10.1115/1.1484110 History: Received March 27, 2000; Revised April 01, 2002; Online September 11, 2002
Copyright © 2002 by ASME
Your Session has timed out. Please sign back in to continue.

References

Wang,  C. C., Kuo,  C. S., Chang,  Y. J., and Lu,  D. C., 1996, “Two-Phase Flow Heat Transfer and Friction Characteristics of R-22 and R-407C,” ASHRAE Trans., 102, Part 1, pp. 830–838.
Shin,  J. Y., Kim,  M. S., and Ro,  S. T., 1996, “Correlation of Convective Boiling Heat Transfer in a Horizontal Tube for Pure Refrigerants and Refrigerant Mixtures,” Korean Journal of Air-Conditioning and Refrigeration Engineering, 8(9), pp. 254–266.
Kim,  S. H., Kwak,  K. M., Bai,  C. H., and Chung,  M., 1997, “An Experimental Study on Nucleate Boiling of Ternary Refrigerant R407C,” Korean Journal of Air-conditioning and Refrigeration Engineering, 9(3), pp. 276–283.
Choi,  T. Y., Kim,  Y. J., Kim,  M. S., and Ro,  S. T., 2000, “Evaporation Heat Transfer of R-32, R-134a, R-32/134a, and R-32/125/134a inside a Horizontal Smooth Tube,” Int. J. Heat Mass Transf., 43, pp. 3651–3660.
Kattan,  N., Thome,  J. R., and Favrat,  D., 1998, “Flow Boiling in Horizontal Tubes: Part 2-New Heat Transfer Data for Five Refrigerants,” ASME J. Heat Transfer, 120, pp. 148–155.
Gungor,  K. E., and Winterton,  R. H. S., 1987, “Simplified General Correlation for Flow Saturated Boiling and Comparisons of Correlations with Data,” Chem. Eng. Res. Des., 65, pp. 148–156.
Jung,  D. S., McLinden,  M., Radermacher,  R., and Didion,  D., 1989, “A Study of Flow Boiling Heat Transfer with Refrigerant Mixture,” Int. J. Heat Mass Transf., 9(1), pp. 1751–1764.
Kandlikar,  S. G., 1990, “A General Correlation for Saturated Two-phase Flow Boiling Heat Transfer Inside Horizontal and Vertical Tubes,” ASME J. Heat Transfer, 112, pp. 219–228.
Kandlikar,  S. G., 1998, “Boiling Heat Transfer with Binary Mixtures: Part II—Flow Boiling in Plain Tubes,” ASME J. Heat Transfer, 120, pp. 388–394.
Kattan,  N., Thome,  J. R., and Favrat,  D., 1998, “Flow Boiling in Horizontal Tubes: Part 3-Development of a New Heat Transfer Model Based on Flow Pattern,” ASME J. Heat Transfer, 120, pp. 156–165.
Ross,  H., Radermacher,  R., and Di Marzo,  M., 1987, “Horizontal Flow Boiling of Pure and Mixed Refrigerants,” Int. J. Heat Mass Transf., 30(5), pp. 979–992.
Jung,  D. S., McLinden,  M., Radermacher,  R., and Didion,  D., 1989, “Horizontal Flow Boiling Heat Transfer Experiments with a Mixture of R22/R114,” Int. J. Heat Mass Transf., 32, pp. 131–145.
Yoshida, S., Mori, H., Matsunaga, T., and Ohishi, K., 1991, “Heat Transfer to Non-Azeotropic Mixtures of Refrigerants Flowing in a Horizontal Evaporator Tube,” ASME/JSME Thermal Eng. Proc., 2 , pp. 295–300.
Niederkrüger,  M., Steiner,  D., and Schlünder,  E.-U., 1992, “Horizontal Flow Boiling Experiments of Saturated Pure Components and Mixtures of R846-R12 at High Pressures,” Int. J. Refrig., 15(1), pp. 48–58.
Boyd,  R. D., Smith,  A., and Turknett,  J., 1995, “Two-Dimensional Wall Temperature Measurements and Heat Transfer Enhancement for Top-Heated Horizontal Channels With Flow Boiling,” Exp. Therm. Fluid Sci., 11, pp. 372–386.
Shin,  J. Y., Kim,  M. S., and Ro,  S. T., 1997, “Experimental Study on Forced Convective Boiling Heat Transfer of Pure Refrigerants and Refrigerant Mixtures in a Horizontal Tube,” Int. J. Refrig., 20, pp. 267–275.
Camci,  C., Kim,  K., Hippensteele,  S. A., and Poinsatte,  P. E., 1993, “Evaluation of a Hue Capturing Based Transient Liquid Crystal Method for High-Resolution Mapping of Convective Heat Transfer on Curved Surfaces,” ASME J. Heat Transfer , 115, pp. 311–318.
Matsumoto,  R., Kikkawa,  S., and Senda,  M., 1997, “Effect of Pin Fin Arrangement on Endwall Heat Transfer,” JSME Int. Journal, Series B, 40(1), pp. 142–151.
Kimura,  I., Kuroe,  Y., and Ozawa,  M., 1993, “Application of Neural Networks to Quantitative Flow Visualization,” J. Flow Visualization and Image Processing, 1, pp. 261.
Huber, M., Gallagher, J., McLinden, M., and Morrison, G., 1996, NIST Thermodynamic Properties of Refrigerants and Refrigerant Mixtures Database (REFPROP) Version 5.0, National Institute of Standards and Technology, U.S.A.
Dittus, F. W., and Boelter, L. M. K., 1930, University of California (Berkeley) Publications of Engineering, 2 , University of California, Berkeley, CA, pp. 443.
Thome,  J. R., and Shakir,  S., 1987, “A New Correlation for Nucleate Pool Boiling of Aqueous Mixtures,” AIChE Symp. Ser., 83(257), pp. 46–51.

Figures

Grahic Jump Location
Relative magnitude of RGB values as a function of temperature
Grahic Jump Location
(a) An exemplary neuron; and (b) neural network used for calibration
Grahic Jump Location
Comparison of the measured temperatures with the calculated values using a neural network
Grahic Jump Location
Schematic diagram of experimental apparatus for measuring circumferential heat transfer coefficient
Grahic Jump Location
Cross sectional view of the test section
Grahic Jump Location
Circumferential variation of inner wall temperatures at quality near 0.25 for R-22 and R-407C: (a) R-22; G=200 kg/m2 s;q=3.6 kW/m2;Psat=670 kPa;x=0.26; and (b) R-407C; G=200 kg/m2 s;q=3.6 kW/m2;Psat=760 kPa; x=0.24
Grahic Jump Location
Circumferential variation of inner wall temperatures at quality near 0.50 for R-22 and R-407C: (a) R-22; G=200 kg/m2 s;q=3.6 kW/m2;Psat=670 kPa;x=0.46; and (b) R-407C; G=200 kg/m2 s;q=3.6 kW/m2;Psat=760 kPa;x=0.54
Grahic Jump Location
Circumferential variation of heat transfer coefficients at several vapor qualities of R-22 (G=200 kg/m2 s;q=3.6 kW/m2;Psat=670 kPa)
Grahic Jump Location
Circumferential variation of heat transfer coefficients at several vapor qualities of R-407C (G=200 kg/m2 s;q=3.6 kW/m2;Psat=760 kPa)
Grahic Jump Location
Circumferential variation of heat transfer coefficients and comparison with correlations for R-22 and R-407C: (a) R-22; G=200 kg/m2 s;q=3.6 kW/m2;Psat=670 kPa;x=0.46; and (b) R-407C; G=200 kg/m2 s;q=3.6 kW/m2;Psat=760 kPa;x=0.54
Grahic Jump Location
Variation of average heat transfer coefficients with respect to quality and comparison with correlations for R-22 and R-407C: (a) R-22; G=200 kg/m2 s;q=3.6 kW/m2;Psat=670 kPa; and (b) R-407C; G=200 kg/m2 s;q=3.6 kW/m2;Psat=760 kPa

Tables

Errata

Discussions

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related Journal Articles
Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In