0
TECHNICAL PAPERS: Microscale Heat Transfer

Thermal and Electrical Energy Transport and Conversion in Nanoscale Electron Field Emission Processes

[+] Author and Article Information
T. S. Fisher

Purdue University, School of Mechanical Engineering, 1288 Mechanical Engineering Building, West Lafayette, IN 47907-1288

D. G. Walker

Vanderbilt University, Department of Mechanical Engineering, Box 1592, Station B, Nashville, TN 37235

J. Heat Transfer 124(5), 954-962 (Sep 11, 2002) (9 pages) doi:10.1115/1.1494091 History: Received May 02, 2001; Revised November 05, 2001; Online September 11, 2002
Copyright © 2002 by ASME
Your Session has timed out. Please sign back in to continue.

References

Hicks,  L. D., and Dresselhaus,  M. S., 1993, “Effect of Quantum-Well Structures on the Thermoelectric Figure of Merit,” Phys. Rev. B, 47, pp. 12 727–12 731.
Mahan,  G. D., 1998, “Good Thermoelectrics,” Solid State Phys., 51, pp. 81–157.
Mahan,  G. D., and Woods,  L. M., 1998, “Multilayer Thermionic Refrigeration,” Phys. Rev. Lett., 18, pp. 4016–4019.
Shakouri,  A., Lee,  E. Y., Smith,  D. L., Narayanamurti,  V., and Bowers,  J. E., 1998, “Thermoelectric Effects in Submicron Heterostructure Barriers,” Microscale Thermophys. Eng., 2, pp. 37–47.
Miskovsky,  N. M., and Cutler,  P. H., 1999, “Microelectronic Cooling Using the Nottingham Effect and Internal Field Emission in a Diamond (Wide-Band Gap Material) Thin-Film Device,” Appl. Phys. Lett., 75, pp. 2147–2149.
Tsu,  R., and Greene,  R. F., 1999, “Inverse Nottingham Effect Cooling in Semiconductors,” Electrochem. Solid-State Lett., 2, pp. 645–647.
Korotkov,  A. N., and Likharev,  K. K., 1999, “Possible Cooling by Resonant Fowler-Nordheim Emission,” Appl. Phys. Lett., 75, pp. 2491–2493.
Korotkov,  A. N., and Likarev,  K. K., 2000, “Cooling by Resonant Fowler-Nordheim Emission,” Physica B, 284, pp. 2030–2031.
Fisher,  T. S., 2001, “Influence of Nanoscale Geometry on the Thermodynamics of Electron Field Emission,” Appl. Phys. Lett., 79(22), pp. 3699–3701.
Cutler,  P. H., Miskovsky,  N. M., Kumar,  N., and Chung,  M. S., 2000, “New Results on Microelectronic Cooling Using the Inverse Nottingham Effect. Low Temperature Operation and Efficiency,” Electrochemical Society Proceedings, 2000–28, pp. 99–111.
Fowler,  R. H., and Nordheim,  L. W., 1928, “Field Emission From Metallic Surfaces,” Proc. R. Soc. London, Ser. A, 119, pp. 173–181.
Spindt,  C. A., 1968, “A Thin Film Field Emission Cathode,” J. Appl. Phys., 39, pp. 3504–3505.
Brodie,  I., and Schwoebel,  P. R., 1994, “Vacuum Microelectronic Devices,” Proc. IEEE, 82, pp. 1006–1018.
Nation,  J. A., Schachter,  L., Mako,  F. M., Len,  L. K., Peter,  W., Tang,  C.-M., and Rao,  T., 1999, “Advances in Cold Cathode Physics and Technology,” Proc. IEEE, 87, pp. 865–889.
Kang,  W. P., Fisher,  T. S., and Davidson,  J. L., 2001, “Diamond Microemitters—The New Frontier of Electron Field Emission and Beyond,” New Diamond and Frontier Carbon Technology, 11, pp. 129–146.
Robertson,  J., 1999, “Mechanisms of Electron Field Emission from Diamond, Diamond-Like Carbon, and Nanostructured Carbon,” J. Vac. Sci. Technol. B, 17, p. 659.
Fleming,  G. M., and Henderson,  J. E., 1940, “The Energy Losses Attending Field Current and Thermionic Emission of Electrons from Metals,” Phys. Rev., 58, pp. 887–894.
Nottingham,  W. B., 1941, “Remarks on Energy Losses Attending Thermionic Emission of Electrons from Metals,” Phys. Rev., 59, pp. 906–907.
Fleming,  G. M., and Henderson,  J. E., 1941, “On the Energy Losses Attending Thermionic and Field Emission,” Phys. Rev., 59, pp. 907–908.
Good,  R. H., and Muller,  E. W., 1956, “Field Emission,” Handbook of Physics, 21, pp. 176–231.
Dyke,  W. P., and Dolan,  W. W., 1956, “Field Emission,” Adv. Electron. Electron Phys., VIII, pp. 90–187.
Gomer, R., 1961, Field Emission and Field Ionization, Harvard University Press, Cambridge, MA.
Swanson,  L. W., Crouser,  L. C., and Charbonnier,  F. M., 1966, “Energy Exchanges Attending Field Electron Emission,” Phys. Rev., 151, pp. 327–340.
Engle,  I., and Cutler,  P. H., 1967, “The Effect of Different Surface Barrier Models on the Nottingham Energy Exchange Process,” Surf. Sci., 8, pp. 288–307.
Bergeret,  H., Septier,  A., and Drechsler,  M., 1985, “Nottingham Effect of a Superconducting Metal,” Phys. Rev. B, 31, pp. 149–153.
Miskovsky,  N. M., Park,  S. H., He,  J., and Cutler,  P. H., 1993, “Energy Exchange Processes in Field Emission from Atomically Sharp Metallic Emitters,” J. Vac. Sci. Technol. B, 11, pp. 366–370.
Chung,  M. S., Cutler,  P. H., Miskovsky,  N. M., and Sullivan,  T. E., 1994, “Energy Exchange Processes in Electron Emission at High Fields and Temperatures,” J. Vac. Sci. Technol. B, 12, pp. 727–736.
Cutler,  P. H., Chung,  M. S., Miskovsky,  N. M., Sullivan,  T. E., and Weiss,  B. L., 1994, “A New Model for the Replacement Process in Electron-Emission at High Fields and Temperatures,” Appl. Surf. Sci., 76, pp. 1–6.
Huang,  Z.-H., Cutler,  P. H., Miskovsky,  N. M., and Sullivan,  T. E., 1995, “Calculation of Electron Field Emission from Diamond Surfaces,” J. Vac. Sci. Technol. B, 13, pp. 526–530.
Cutler,  P. H., Huang,  Z.-H., Miskovsky,  N. M., D’Ambrosio,  P., and Chung,  M., 1996, “Monte Carlo Study of Hot Electron and Ballistic Transport in Diamond: Low Electric Field Region,” J. Vac. Sci. Technol. B, 14, pp. 2020–2023.
Lerner,  P., Cutler,  P. H., and Miskovsky,  N. M., 1997, “Hot Electron and Quasiballistic Transport of Nonequilibrium Electrons in Diamond Thin Films,” J. Vac. Sci. Technol. B, 15, pp. 398–400.
Lerner,  P., Cutler,  P. H., and Miskovsky,  N. M., 1997, “Theoretical Analysis of Field Emission from a Metal Diamond Cold Cathode Emitter,” J. Vac. Sci. Technol. B, 15, pp. 337–342.
Lerner,  P., Miskovsky,  N. M., and Cutler,  P. H., 1998, “Model Calculations of Internal Field Emission and J-V Characteristics of a Composite n-Si and N-Diamond Cold Cathode Source,” J. Vac. Sci. Technol. B, 16, pp. 900–905.
Cutler,  P. H., Miskovsky,  N. M., Lerner,  P. B., and Chung,  M. S., 1999, “The Use of Internal Field Emission to Inject Electronic Charge Carriers into the Conduction Band of Diamond Films: A Review,” Appl. Surf. Sci., 146, pp. 126–133.
Everhart,  T. E., 1967, “Simplified Analysis of Point-Cathode Electron Sources,” J. Appl. Phys., 38, pp. 4944–4957.
Robinett, R. W., 1997, Quantum Mechanics: Classical Results, Modern Systems, and Visualized Examples, Oxford University Press, New York, pp. 263–264.
Jensen,  K. L., Kodis,  M. A., Murphy,  R. A., and Zaidman,  E. G., 1997, “Space Charge Effects on the Current-Voltage Characteristics of Gated Field Emitter Arrays,” J. Appl. Phys., 82, pp. 845–854.
Modinos, A., 1984, Field, Thermionic and Secondary Electron Emission Spectroscopy, Plenum Press, New York.
Jensen,  K. L., and Zaidman,  E. G., 1993, “Field Emission from an Elliptical Boss: Exact Versus Approximate Treatments,” Appl. Phys. Lett., 63, pp. 702–704.
Jensen,  K. L., 1999, “Semianalytical Model of Electron Source Potential Barriers,” J. Vac. Sci. Technol. B, 17, pp. 515–519.
Nazarov,  Yu. V., 1989, “Anomalous Current-Voltage Characteristics of Tunnel Junctions,” Sov. Phys. J., 68, pp. 561–566.
Robinett, R. W., 1997, Quantum Mechanics: Classical Results, Modern Systems, and Visualized Examples, Oxford University Press, New York, pp. 229–233.
Karabutov,  A. V., Frolov,  V. D., Pimenov,  S. M., and Konov,  V. I., 1999, “Grain Boundary Field Electron Emission from CVD Diamond Films,” Diamond Relat. Mater., 8, pp. 763–767.
Karabutov,  A. V., Frolov,  V. D., and Konov,  V. I., 2001, “Diamond/sp2-Bonded Carbon Structures: Quantum Well Field Electron Emission,” Diamond Relat. Mater., 10, pp. 840–846.
Dwight, H. B., 1961, Tables of Integrals and Other Mathematical Data, Macmillan Company, New York, p. 144.
Collins, A. T., 1994, Properties and Growth of Diamond, G. Davies, ed., EMIS Datareviews Series No. 9, INSPEC, London.
Koizumi,  S., Kamo,  M., Sato,  Y., Mita,  S., Sawabe,  A., Reznik,  A., Uzan-Saguy,  C., and Kalish,  R., 1998, “Growth and Characterization of Phosphorus Doped n-type Diamond Thin Films,” Diamond Relat. Mater., 7, pp. 540–544.
Sakaguci,  I., Gamo,  M. N., Kikuchi,  Y., Yasu,  E., and Haneda,  H., 1999, “Sulfur: A Donor Dopant for n-type Diamond Semiconductors,” Phys. Rev. B, 60, pp. R2139–R2141.
Saada,  D., Adler,  J., and Kalish,  R., 2000, “Sulfur: A Potential Donor in Diamond,” Appl. Phys. Lett., 77, pp. 878–879.
Geis,  M. W., Twichell,  J. W., and Lyszczarz,  T. M., 1996, “Diamond Emitters Fabrication and Theory,” J. Vac. Sci. Technol. B, 14, pp. 2060–2067.
Koenigsfeld,  N., Philosoph,  B., and Kalish,  R., 2000, “Field Emission Controlled by the Substrate/CVD Diamond Interface,” Diamond Relat. Mater., 9, pp. 1218–1221.
Silva,  S. R. P., Amaratunga,  G. A. J., and Okano,  K., 1999, “Modeling of the Electron Field Emission Process in Polycrystalline Diamond and Diamond-like Carbon Thin Films,” J. Vac. Sci. Technol. B, 17, pp. 557–561.
Ristein,  J., Stein,  W., and Ley,  L., 1998, “Photoelectron Yield Spectroscopy on Negative Electron Affinity Diamond Surfaces: A Contactless Unipolar Transport Experiment,” Diamond Relat. Mater., 7, pp. 626–631.
Baumann,  P. K., and Nemanich,  R. J., 1998, “Surface Cleaning, Electronic States and Electron Affinity of Diamond (100), (111) and (110) Surfaces,” Surf. Sci., 409, pp. 320–355.
Krainsky,  I. L., and Asnin,  V. M., 1998, “Negative Electron Affinity Mechanism for Diamond Surfaces,” Appl. Phys. Lett., 72, pp. 2574–2576.
Nemanich,  R. J., Baumann,  P. K., Benjamin,  M. C., Nam,  O.-H., Sowers,  A. T., Ward,  B. L., Ade,  H., and Davis,  R. F., 1998, “Electron Emission Properties of Crystalline Diamond and III-Nitride Surfaces,” Appl. Surf. Sci., 130, pp. 694–703.
Lui,  W. W., and Fukuma,  M., 1986, “Exact Solution of the Schrödinger Equation Across an Arbitrary One-Dimensional Piecewise-Linear Potential Barrier,” J. Appl. Phys., 60, pp. 1555–1559.
Fonseca,  L. R. C., von Allmen,  P., and Ramprasad,  R., 2000, “Numerical Simulation of the Tunneling Current and Ballistic Electron Effects in Field Emission Devices,” J. Appl. Phys., 87, pp. 2533–2541.
Lang,  N. D., 1985, “Vacuum Tunneling Current from an Adsorbed Atom,” Phys. Rev. Lett., 55, pp. 230–233.
Lang,  N. D., 1986, “Theory of Single-Atom Imaging in the Scanning Tunneling Microscope,” Phys. Rev. Lett., 56, pp. 1164–1167.
Lang,  N. D., 1986, “Spectroscopy of Single Atoms in the Scanning Tunneling Microscope,” Phys. Rev. B, 34, pp. 5947–5950.
Lucas,  A. A., Morawitz,  H., Henry,  G. R., Vigneron,  J.-P., Lambin,  Ph., Cutler,  P. H., and Feuchtwang,  T. E., 1988, “Scattering-Theoretic Approach to Elastic One-Electron Tunneling Through Localized Barriers: Application to Scanning Tunneling Microscopy,” Phys. Rev. B, 37, pp. 10 708–10 720.
Lucas,  A. A., Morawitz,  H., Henry,  G. R., Vigneron,  J.-P., Lambin,  Ph., Cutler,  P. H., and Feuchtwang,  T. E., 1988, “Tunneling through Localized Barriers with Application to Scanning Tunneling Microscopy: New Scattering Theoretic Approach and Results,” J. Vac. Sci. Technol. A, 6, pp. 296–299.
Huang,  Z. H., Feuchtwang,  T. E., Cutler,  P. H., and Kazes,  E., 1990, “The Wentzel-Kramers-Brillouin Method in Multidimensional Tunneling: Application to Scanning Tunneling Microscopy,” J. Vac. Sci. Technol. A, 8, pp. 177–181.
Miskovsky,  N. M., and Cutler,  P. H., 1999, “Calculation of the Local Density of States for a Discrete Pyramidal Model of a Diamond Tip Surmounted by a Single Atom,” Surf. Sci., 439, pp. 173–180.
Miskovsky,  N. M., Park,  S. H., He,  J., and Cutler,  P. H., 1993, “Energy Exchange Processes in Field Emission from Atomically Sharp Metallic Emitters,” J. Vac. Sci. Technol. B, 11, pp. 366–370.
Fursey,  G. N., and Glazanov,  D. V., 1998, “Deviations from the Fowler-Nordheim Theory and Peculiarities of Field Electron Emission from Small-Scale Objects,” J. Vac. Sci. Technol. B, 16, pp. 910–915.
He,  J., Cutler,  P. H., Miskovsky,  N. M., and Feuchtwang,  T. E., 1991, “Derivation of the Image Interaction for Non-Planar Pointed Emitter Geometries: Application to Field Emission I-V Characteristics,” Surf. Sci., 246, pp. 348–364.
He,  J., Cutler,  P. H., and Miskovsky,  N. M., 1991, “Generalization of Fowler-Nordheim Field Emission Theory for Nonplanar Metal Emitters,” Appl. Phys. Lett., 59, pp. 1644–1646.
Cutler,  P. H., He,  J., and Miskovsky,  N. M., 1993, “Theory of Electron Emission in High Fields from Atomically Sharp Emitters: Validity of the Fowler-Nordheim Equation,” J. Vac. Sci. Technol. B, 11, pp. 387–391.
Cutler,  P. H., He,  J., Miller,  J., Miskovsky,  N. M., Weiss,  B., and Sullivan,  T. E., 1993, “Theory of Electron Emission in High Fields from Atomically Sharp Emitters: Validity of the Fowler-Nordheim Equation,” Prog. Surf. Sci., 42, pp. 169–185.
Jensen,  K. L., Mukhopadhyay-Phillips,  P., Zaidman,  E. G., Nguyen,  K., Kodis,  M. A., Malsawma,  L., and Hor,  C., 1997, “Electron Emission from a Single Spindt-Type Filed Emitter: Comparison of Theory with Experiment,” Appl. Surf. Sci., 111, pp. 204–212.
Gadzuk,  J. W., and Plummer,  E. W., 1973, “Field-Emission Energy-Distribution (FEED),” Rev. Mod. Phys., 45, pp. 487–548.
Kuyatt,  C. E., and Simpson,  J. A., 1967, “Electron Monochromator Design,” Rev. Sci. Instrum., 38, pp. 103–111.
Wysocki,  J. K., 1982, “Testing of a Field Electron Energy Analyser,” Journal of Physics E-Scientific Instruments, 15, pp. 1376–1385.
Oshima,  C., 1997, “An Apparatus for High Resolution Field Emission Spectroscopy,” Adv. Colloid Interface Sci., 71, pp. 353–369.
Bernhard,  J. M., Rouse,  A. A., Sosa,  E. D., Gnade,  B. E., Golden,  D. E., and Chalamala,  B. R., 1999, “A Compact Electron Energy Analyzer for Measuring Field Emission Energy Distributions,” Rev. Sci. Instrum., 70, pp. 3299–3302.
Grant,  P., Py,  C., Möbner,  C., Blais,  A., Tran,  H., and Gao,  M., 2000, “Electron Field Emission From Diamond-like Carbon, a Correlation with Surface Modifications,” J. Appl. Phys., 87, pp. 1356–1360.
Ehrich,  F. F., 1954, “Differentiation of Experimental Data Using Least Squares Fitting,” J. Aeronaut. Sci., 22, pp. 133–134.
Jensen,  K. L., Yater,  J. E., Zaidman,  E. G., Kodis,  M. A., and Shih,  A., 1998, “Advanced Emitters for Next Generation RF Amplifiers,” J. Vac. Sci. Technol. B, 16, pp. 2038–2048.
Beck, J. V., and Arnold, K. J., 1977, Parameter Estimation in Engineering and Science, Wiley, New York.
Haftka,  R. T., Scott,  E. P., and Cruz,  J. R., 1998, “Optimization and Experiments: A Survey,” Appl. Mech. Rev., 51, pp. 435–448.
Wisitsora-at,  A., Kang,  W. P., Davidson,  J. L., Li,  Q., Xu,  J. F., and Kerns,  D. V., 1999, “Efficient Electron Emitter Utilizing Boron-Doped Diamond Tips with sp(2) Content,” Appl. Surf. Sci., 146, pp. 280–287.
Gotoh,  Y., Inoue,  K., Ohtake,  T., Ueda,  H., Hishida,  Y., Tsuji,  H., and Ishikawa,  J., 1994, “Application of Focused Ion Beam Techniques to the Fabrication of Lateral-Type Thin-Film Edge Field Emitters,” Japanese Journal of Applied Physics Part 2–Letters, 33, pp. L63–L70.
Tamtair,  F. G., Chen,  L. C., Wer,  S. L., Hong,  W. K., Chen,  K. H., and Cheng,  H. C., 2000, “High Current Density Field Emission from Arrays of Carbon Nanotubes and Diamond-Clad Si Tips,” J. Vac. Sci. Technol. B, 18, pp. 1207–1213.
Hatsopoulos, G. N., and Gyftopoulos, E. P., 1973, Thermionic Energy Conversion, Vol. I, MIT Press, Cambridge, MA, ch. 2.

Figures

Grahic Jump Location
Nanotips for electron field emission: (a) Schematic of an energy conversion system including nanotip electron emitters (cathode), gate electrode, and anode; and (b) Example of a polycrystalline diamond nanotip emitter surrounded by a monolithic gate. The tip radius is ∼10 nm.
Grahic Jump Location
Electron potential profile near a tip emitter. Solid line represents actual potential field. Dashed line represents approximate, linearized field. Both fields produce the same emission current.
Grahic Jump Location
Electron potential as a function of position from emitter and emitter radius. All profiles produce the same current density, J=10 A/cm2. ϕ=1.7 eV. K=5.5.T=300 K.
Grahic Jump Location
Average emitted and replacement electron energies as a function applied field. Average axial emitted energy=〈W〉. Average radial emitted energy 〈ερ〉. Average axial replacement energy=〈Wr〉. Average radial emitted energy 〈ερr〉. Figure inset shows net electron exchange energy as a function of applied field. Emitter characteristic radius R=10 nm. Work function ϕ=1.7 eV. K=5.5. Temperature T=300 K.
Grahic Jump Location
Emission energy flux from the cathode as a function applied field F, emitter characteristic radius R, and work function ϕ: (a) ϕ=1 eV; (b) ϕ=1.7 eV; and (c) ϕ=3 eV. Each part shows curves for three emitter radii, R=10, 25, and 100 nm. K=5.5. Temperature T=300 K.
Grahic Jump Location
Band diagrams for field emission from diamond: (a) Unbiased at thermal equilibrium; and (b) Field emission via tunneling from the base electrode to the cathode’s conduction band and from the conduction band to vacuum

Tables

Errata

Discussions

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related Journal Articles
Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In