0
TECHNICAL PAPERS: Microscale Heat Transfer

Interface and Strain Effects on the Thermal Conductivity of Heterostructures: A Molecular Dynamics Study

[+] Author and Article Information
Alexis R. Abramson, Chang-Lin Tien, Arun Majumdar

Department of Mechanical Engineering, University of California, Berkeley, CA 94720-1740

J. Heat Transfer 124(5), 963-970 (Sep 11, 2002) (8 pages) doi:10.1115/1.1495516 History: Received September 24, 2001; Revised May 13, 2002; Online September 11, 2002
Copyright © 2002 by ASME
Your Session has timed out. Please sign back in to continue.

References

Mahan,  G., Sales,  B., and Sharp,  J., 1997, “Thermoelectric materials: New Approaches to an Old Problem,” Phys. Today, 50, pp. 42–47.
Dresselhaus,  M. S., Dresselhaus,  G., Sun,  X., Zhang,  Z., Cronin,  S. B., Koga,  T., Ying,  J. Y., and Chen,  G., 1999, “The Promise of Low-Dimensional Thermoelectric Materials,” Microscale Thermophys. Eng., 3, pp. 89–100.
Yao,  T., 1987, “Thermal Properties of AlAs/GaAs Superlattices,” Appl. Phys. Lett., 51, pp. 1798–1800.
Weisbuch, C., and Vinter, B., 1991, Quantum Semiconductor Structures, Academic Press, Boston, MA.
Capinski,  W. S., and Maris,  H. J., 1996, “Thermal Conductivity of GaAs/AlAs Superlattices,” Physica B, 220, pp. 699–701.
Capinski,  W. S., Maris,  H. J., Ruf,  T., Cardona,  M., Ploog,  K., and Katzer,  D. S., 1999, “Thermal Conductivity Measurements of GaAs/AlAs Superlattices Using a Picosecond Optical Pump-and-Probe Technique,” Phys. Rev. B, 59, pp. 8105–8113.
Lee,  S. M., Cahill,  D. G., and Venkatasubramanian,  R., 1997, “Thermal Conductivity of Si-Ge Superlattices,” Appl. Phys. Lett., 70, pp. 2957–2959.
Yamasaki, I., Yamanaka, R., Mikami, M., Sonobe, H., Mori, Y., and Sasaki, T., 1998, “Thermoelectric Properties of Bi2Te3/Sb2Te3 Superlattice Structures,” Proceedings 17th International Thermoelectrics Conference ICT ’98, IEEE, CA, pp. 210–213.
Venkatasubramanian,  R., 2000, “Lattice Thermal Conductivity Reduction and Phonon Localization Like Behavior in Superlattice Structures,” Phys. Rev. B, 61, pp. 3091–3097.
Huxtable, S. T., Abramson, A. R., Majumdar, A., Tien, C. L., LaBounty, C., Fan, X., Zeng, G., Abraham, P., Bowers, J. E., Shakouri, A., and Croke, E. T., 2001, “Thermal Conductivity of Si/SiGe Superlattices,” Proceedings IMECE ’01, ASME, New York.
Chen,  G., and Neagu,  M., 1997, “Thermal Conductivity and Heat Transfer in Superlattices,” Appl. Phys. Lett., 71, pp. 2761–2763.
Rosenblum,  I., Adler,  J., Brandon,  S., and Hoffman,  A., 2000, “Molecular-Dynamics Simulation of Thermal Stress at the (100) Diamond/Substrate Interface: Effect of Film Continuity,” Phys. Rev. B, 62, pp. 2920–2936.
Borca-Tasciuc, T., Achimov, D., Liu, W. L., Chen, G., Lin, C. H., Delaney, A., and Pei, S. S., 2001, “Thermal Conductivity of InAs/AlSb Superlattices,” Proceedings International Conference on Heat Transfer and Transport Phenomena in Microscale, Banff, Canada, Begell House, New York, pp. 369–371.
Borca-Tasciuc, T., Liu, W. L., Liu, J. L., Zeng, Song, D. W., Moore, C. D., Chen, G., Wang, K. L., Goorsky, M. S., Radetic, T., Gronsky, R., Sun, X., and Dresselhaus, M. S., 1999, “Thermal Conductivity of Si/Ge Superlattices,” Proceedings 18th International Conference on Thermoelectrics ICT ’99 IEEE, CA.
Rieger,  M. M., and Vogl,  P., 1993, “Electronic-Band Parameters in Strained Si(1-x)Ge(x) Alloys on Si(1-y)Ge(y) Substrates,” Phys. Rev. B, 48, pp. 14276–14287.
Tserbak,  C., Polataoglou,  H. M., and Theodorou,  G., 1993, “Unified Approach to the Electronic-Structure of Strained Si/Ge Superlattices,” Phys. Rev. B, 47, pp. 7104–7124.
Ghanbari,  R. A., White,  J. D., Fasol,  G., Gibbings,  C. J., and Tuppen,  C. G., 1990, “Phonon Frequencies for Si-Ge Strained Layer Superlattices Calculated in a Three-Dimensional Model,” Phys. Rev. B, 42, pp. 7033–7041.
Qteish,  A., and Molinari,  E., 1990, “Interplanar Forces and Phonon Spectra of Strained Si and Ge: Ab initio Calculations and Applications to Si/Ge Superlattices,” Phys. Rev. B, 42, pp. 7090–7096.
Sui,  Z., and Herman,  I. P., 1993, “Effect of Strain on Phonons in Si, Ge, and Si/Ge Heterostructures,” Phys. Rev. B, 48, pp. 17938–17953.
Little,  W. A., 1959, “The Transport of Heat Between Dissimilar Solids at Low Temperatures,” Can. J. Phys., 37, pp. 334–349.
Stoner,  R. J., and Maris,  H. J., 1993, “Kapitza Conductance and Heat Flow Between Solids at Temperatures From 50 to 300 K,” Phys. Rev. B, 48, pp. 16373–16387.
Tamura,  S., Tanaka,  Y., and Maris,  H. J., 1999, “Phonon Group Velocity and Thermal Conduction in Superlattices,” Phys. Rev. B, 60, pp. 2627–2630.
Tamura,  S., Hurley,  D. C., and Wolfe,  J. P., 1988, “Acoustic Phonon Propagation in Superlattices,” Phys. Rev. B, 38, pp. 1427–1449.
Simkin,  M. V., and Mahan,  G. D., 2000, “Minimum Thermal Conductivity of Superlattices,” Phys. Rev. Lett., 84, pp. 927–930.
Narayanamurti,  V., Stormer,  H. L., Chin,  M. A., Gossard,  A. C., and Wiegmann,  W., 1979, “Selective Transmission of High-Frequency Phonons by a Superlattice: The “Dielectric” Phonon Filter,” Phys. Rev. Lett., 43, pp. 2012–2016.
Chen,  G., 1999, “Phonon Wave Heat Conduction in Thin Films and Superlattices,” ASME J. Heat Transfer, 121, pp. 945–953.
Swartz,  E. T., and Pohl,  R. O., 1987, “Thermal Resistance at Interfaces,” Appl. Phys. Lett., 51, pp. 2200–2202.
Balandin,  A., and Wang,  K. L., 1998, “Significant Decrease of the Lattice Thermal Conductivity Due to Phonon Confinement in a Free-Standing Semiconductor Quantum Well,” Phys. Rev. B, 58, pp. 1544–1549.
Chen,  G., 1997, “Size and Interface Effects on Thermal Conductivity of Superlattices and Periodic Thin-Film Structures,” ASME J. Heat Transfer, 119, pp. 220–229.
Chen,  G., 1998, “Thermal Conductivity and Ballistic-Phonon Transport in the Cross-Plane Direction of Superlattices,” Phys. Rev. B, 57, pp. 14958–14973.
Peterson,  R. B., 1994, “Direct Simulation of Phonon-Mediated Heat Transfer in a Debye Crystal,” ASME J. Heat Transfer, 116, pp. 815–1994.
Mazumdar,  S., and Majumdar,  A., 2001, “Monte Carlo Study of Phonon Transport in Solid Thin Films Including Dispersion and Polarization,” ASME J. Heat Transfer, 123, pp. 749–759.
Liang,  X. G., and Shi,  B., 2000, “Two-Dimensional Molecular Dynamics Simulation of the Thermal Conductance of Superlattices,” Mater. Sci. Eng., A, 292, pp. 198–202.
Volz,  S., Saulnier,  J. B., Chen,  G., and Beauchamp,  P., 2000, “Molecular Dynamics of Heat Transfer in Si/Ge Superlattices,” High Temp.-High Press., 32, pp. 709–714.
Allen, M. P., and Tildesley, D. J., 1987, Computer Simulation of Liquids, Clarendon Press, Oxford.
Lukes,  J. R., Li,  D. Y., Liang,  X. G., and Tien,  C. L., “Molecular Dynamics Study of Solid Thin-Film Thermal Conductivity,” ASME J. Heat Transfer, 122, pp. 536–543.
Irving,  J. H., and Kirkwood,  J. G., 1950, “The Statistical Mechanical Theory of Transport Processes A. The Equations of Hydrodynamics,” J. Chem. Phys., 18, pp. 817–829.
Swope,  W. C., Anderson,  H. C., Berens,  P. H., and Wilson,  K. R., 1982, “A Computer Simulation Method for the Calculation of Equilibrium Constants for the Formation of Physical Clusters of Molecules: Application to Small Water Clusters,” J. Chem. Phys., 76, pp. 637–649.
Dobbs,  E. R., and Jones,  G. O., 1957, “Theory and Properties of Solid Argon,” Rep. Prog. Phys., 20, pp. 516–564.
Reid, R. C., Prausnitz, J. M., and Poling, B. E., 1987, The Properties of Gases and Liquids, Mc-Graw Hill, New York.
White,  G. K., and Woods,  S. B., 1958, “Thermal Conductivity of the Solidified Inert Gases: Argon, Neon and Krypton,” Philos. Mag., 3, pp. 785–797.
Bao, Y., and Chen, G., 2000, “Lattice Dynamics Study of Anisotropy of Heat Conduction in Superlattices,” Proceedings of MRS Spring Meeting, Symposium Z, Materials Research Society, PA.
Jacucci,  G., and Rahman,  A., 1984, “Comparing the Efficiency of Metropolis Monte Carlo and Molecular Dynamics Methods for Configuration Space Sampling,” Nuovo Cimento, D4, pp. 341–356.
Weast, R. C., Astle, M. J., and Beyer, W. H., eds., 1996, CRC Handbook of Chemistry and Physics, CRC Press, Boca Raton.
Press, W. H., Teukolsky, S. A., Vetterling, W. T., and Flannery, B. P., 1992, Numerical Recipes in FORTRAN: The Art of Scientific Computing, 2nd edition, Cambridge University Press, Cambridge.

Figures

Grahic Jump Location
Schematic of molecular dynamics simulation cell
Grahic Jump Location
One-dimensional temperature distribution from an MD simulation of a bi-material film composed of 16 unit cells Kr (solid diamond) adjacent to 16 unit cells Ar (solid circle). The temperature jump indicates the presence of interfacial thermal resistance. The inset illustrates the instantaneous and best-fit slopes of the lines corresponding to the two materials normalized using the best-fit slope of Kr.
Grahic Jump Location
Effective thermal conductivity of strained bi-material Kr/Ar films as a function of increasing thickness (solid square) and compared with thin film average (solid circle). Note m=n.
Grahic Jump Location
Effective thermal conductivity of strained bi-material Kr/Ar films as a function of individual film thickness ratio, but the same overall thickness (solid square) and compared with thin film average (solid circle). Note n=24−m.
Grahic Jump Location
Effective thermal conductivity of simple asymmetrically strained superlattices as a function of numbers of interfaces per unit thickness (solid square) and compared with thin film average (solid circle)
Grahic Jump Location
(a) initial and (b) final positions of Kr (light circles) and Ar (dark circles) atoms for a molecular dynamics simulation of a bi-material film with a semi-coherent or relaxed interface. The initial conditions are set to the exact lattice parameters of Kr and Ar. After the simulation, the atoms rearranged themselves such that the lattice parameter at the interface is approximately the average of aKr and aAr. The interatomic distance grows smaller for the Ar atoms and larger for the Kr atoms away from the interface.
Grahic Jump Location
Effective thermal conductivity of bi-material Kr/Ar films as a function of overall thickness (thickness ratio=1) for strained (solid square), relaxed (solid triangle) and thin film average (solid circle) cases. Note m=n.

Tables

Errata

Discussions

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related Journal Articles
Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In