0
TECHNICAL PAPERS: Forced Convection

Dual Pulsating or Steady Slot Jet Cooling of a Constant Heat Flux Surface

[+] Author and Article Information
A. K. Chaniotis, D. Poulikakos, Y. Ventikos

Institute of Energy Technology, Laboratory of Thermodynamics in Emerging Technologies, ETH, Zurich, Switzerland

J. Heat Transfer 125(4), 575-586 (Jul 17, 2003) (12 pages) doi:10.1115/1.1571093 History: Received July 15, 2002; Revised February 14, 2003; Online July 17, 2003
Copyright © 2003 by ASME
Your Session has timed out. Please sign back in to continue.

References

Martin,  H., 1977, “Heat and Mass Transfer between Impinging Gas Jets and Solid Surfaces,” Adv. Heat Transfer, 13, pp. 1–60.
Polat,  S., Huang,  B., Mujumdar,  A. S., and Douglas,  W. J. M., 1989, “Numerical Flow and Heat Transfer under Impinging Jets: A Review,” Annu. Rev. Numer. Fluid Mech. Heat Transfer, 2, pp. 157–197.
Viskanta,  R., 1993, “Heat-Transfer to Impinging Isothermal Gas and Flame Jets,” Exp. Therm. Fluid Sci., 6(2), pp. 111–134.
Lienhard,  V. J. H., 1995, “Liquid Jet Impingement,” Annu. Rev. Heat Transfer, 6, pp. 199–270.
Gardon,  R., and Akfirat,  J. C., 1966, “Heat Transfer Characteristics of Impinging Two-Dimensional Air Jets,” J. Heat Transfer, 88, pp. 101–108.
Donaldso,  C. D., Snedeker,  R. S., and Margolis,  D. P., 1971, “Study of Free Jet Impingement: 2. Free Jet Turbulent Structure and Impingement Heat Transfer,” J. Fluid Mech., 45, pp. 477–512.
Metzger,  D. E., and Korstad,  R. J., 1972, “Effects of Crossflow on Impingement Heat-Transfer,” Journal of Engineering for Power-Transactions of the ASME, 94(1), pp. 35.
Sparrow,  E. M., and Wong,  T. C., 1975, “Impingement Transfer Coefficients Due to Initially Laminar Slot Jets,” Int. J. Heat Mass Transf., 18, pp. 597–605.
Sparrow,  E. M., and Lee,  L., 1975, “Analysis of Flow Field and Impingement Heat-Mass Transfer Due to a Nonuniform Slot Jet,” Journal of Heat Transfer transactions of the ASME , 97(2), pp. 191–197.
Saad,  N. R., Douglas,  W. J. M., and Mujumdar,  A. S., 1977, “Prediction of Heat-Transfer Under an Axisymmetric Laminar Impinging Jet,” Ind. Eng. Chem. Fundam., 16(1), pp. 148–154.
Hollworth,  B. R., and Berry,  R. D., 1978, “Heat-Transfer From Arrays of Impinging Jets With Large Jet-to-Jet Spacing,” Journal of Heat Transfer-Transactions of the ASME , 100(2), pp. 352–357.
Kataoka,  K., Ase,  H., and Sako,  N., 1988, “Unsteady Aspects of Large-Scale Coherent Structures and Impingement Heat-Transfer in Round Air Jets With and Without Controlled Excitation,” International Journal of Engineering Fluid Mechanics, 1(3), pp. 365–382.
Eibeck,  P. A., Keller,  J. O., Bramlette,  T. T., and Sailor,  D. J., 1993, “Pulse Combustion—Impinging Jet Heat-Transfer Enhancement,” Combust. Sci. Technol., 94(1–6), pp. 147–165.
Zumbrunnen,  D. A., and Aziz,  M., 1993, “Convective Heat Transfer Enhancement Due to Intermittency in an Impinging Jet,” Journal of Heat Transfer-Transactions of the ASME , 115(1), pp. 91–98.
Azevedo,  L. F. A., Webb,  B. W., and Queiroz,  M., 1994, “Pulsed Air-Jet Impingement Heat-Transfer,” Exp. Therm. Fluid Sci., 8(3), pp. 206–213.
Mladin,  E. C., and Zumbrunnen,  D. A., 1994, “Nonlinear Dynamics of Laminar Boundary-Layers in Pulsatile Stagnation Flows,” J. Thermophys. Heat Transfer, 8(3), pp. 514–523.
Sheriff,  H. S., and Zumbrunnen,  D. A., 1994, “Effect of Flow Pulsations on the Cooling Effectiveness of an Impinging Jet,” Journal of Heat Transfer-Transactions of the ASME , 116(4), pp. 886–895.
Mladin,  E. C., and Zumbrunnen,  D. A., 1995, “Dependence of Heat-Transfer to a Pulsating Stagnation Flow on Pulse Characteristics,” J. Thermophys. Heat Transfer, 9,(1), pp. 181–192.
Mladin,  E. C., and Zumbrunnen,  D. A., 1997, “Local Convective Heat Transfer to Submerged Pulsating Jets,” Int. J. Heat Mass Transf., 40(14), pp. 3305–3321.
Sailor,  D. J., Rohli,  D. J., and Fu,  Q. L., 1999, “Effect of Variable Duty Cycle Flow Pulsations on Heat Transfer Enhancement for an Impinging Air Jet,” Int. J. Heat Mass Transf., 20(6), pp. 574–580.
Sheriff,  H. S., and Zumbrunnen,  D. A., 1999, “Local and Instantaneous Heat Transfer Characteristics of Arrays of Pulsating Jets,” Journal of Heat Transfer-Transactions of the ASME , 121(2), pp. 341–348.
Mladin,  E. C., and Zumbrunnen,  D. A., 2000, “Alterations to Coherent Flow Structures and Heat Transfer Due to Pulsations in an Impinging Air-Jet,” Int. J. Therm. Sci., 39(2), pp. 236–248.
Haneda,  Y., Tsuchiya,  Y., Nakabe,  K., and Suzuki,  K., 1998, “Enhancement of Impinging Jet Heat Transfer by Making Use of Mechano-Fluid Interactive Flow Oscillation,” Int. J. Heat Fluid Flow, 19(2), pp. 115–124.
Chaniotis, A. K., and Poulikakos, D., 2001, “Modeling of Continuous and Intermitent Gas Jet Impingement and Heat Transfer on a Solid Surface,” Proc of ASME International Mechanical Engineering Congress and Exposition, New York.
Zumbrunnen,  D. A., and Balasubramanian,  M., 1995, “Convective Heat Transfer Enhancement Due to Gas Injection into an Impinging Liquid Jet,” Journal of Heat Transfer-Transactions of the ASME , 117(4), pp. 1011–1017.
Kee, R. J., Rupley, F. M., Meeks, E., and Miller, J. A., 1996, “Chemkin-Iii: A Fortran Chemical Kinetics Package for the Analysis of Gas-Phase Chemical and Plasma Kinetics,” Sandia Report SAND96-8216, Sandia National Laboratories, Livermore, CA.
Kee, R. J., Dixon-Lewis, G., Warnatz, J., Coltrin, M. E., and Miller, J. A., 1986, “A Fortran Computer Package for the Evaluation of Gas-Phase, Multicomponent Transport Properties,” Sandia Report SAND86-8246, Sandia National Laboratories, Livermore, CA.
Thompson,  K. W., 1987, “Time-Dependent Boundary-Conditions for Hyperbolic Systems,” J. Comput. Phys., 68(1), pp. 1–24.
Poinsot,  T. J., and Lele,  S. K., 1992, “Boundary-Conditions for Direct Simulations of Compressible Viscous Flows,” J. Comput. Phys., 101(1), pp. 104–129.
Monaghan,  J. J., 1985, “Particle Methods for Hydrodynamics,” Comput. Phys. Rep., 3(2), pp. 71–124.
Monaghan,  J. J., 1992, “Smoothed Particle Hydrodynamics,” Annu. Rev. Astron. Astrophys., 30, pp. 543–574.
Morris,  J. P., Fox,  P. J., and Zhu,  Y., 1997, “Modeling Low Reynolds Number Incompressible Flows Using Sph,” J. Comput. Phys., 136(1), pp. 214–226.
Bicknell,  G. V., 1991, “The Equations of Motion of Particles in Smoothed Particle Hydrodynamics,” SIAM J. Sci. Comput. (USA), 12(5), pp. 1198–1206.
Monaghan,  J. J., 1988, “An Introduction to Sph,” Comput. Phys. Commun., 48(1), pp. 89–96.
Takeda,  H., Miyama,  S. M., and Sekiya,  M., 1994, “Numerical-Simulation of Viscous-Flow by Smoothed Particle Hydrodynamics,” Prog. Theor. Phys., 92(5), pp. 939–960.
Monaghan,  J. J., and Kocharyan,  A., 1995, “Sph Simulation of Multiphase Flow,” Comput. Phys. Commun., 87(1–2), pp. 225–235.
Chaniotis,  A. K., Poulikakos,  D., and Koumoutsakos,  P., 2002, “Remeshed Smoothed Particle Hydrodynamics for the Simulation of Viscous and Heat Conducting Flows,” J. Comput. Phys., 182(1), pp. 67–90.
Hockney, R. W., and Eastwood, J. W., 1988, Computer Simulation Using Particles, Institute of Physics Publishing, Bristol.
Koumoutsakos,  P., 1997, “Inviscid Axisymmetrization of an Elliptical Vortex,” J. Comput. Phys., 138(2), pp. 821–857.
Cottet, G. H., and Koumoutsakos, P. D., 2000, Vortex Methods, Cambridge University Press, London.
Byrne, G. D., 1992, Pragmatic Experiments with Krylov Methods in the Stiff Ode Setting, Oxford Univ. Press.
Brown,  P. N., Byrne,  G. D., and Hindmarsh,  A. C., 1989, “Vode—A Variable-Coefficient Ode Solver,” SIAM J. Sci. Comput. (USA), 10(5), pp. 1038–1051.
Panton, R. L., 1984, Incompressible Flow, Wiley, New York.
Kantz, H., and Schreiber, T., 1997, Nonlinear Time Series Analysis, Cambridge University Press, Cambridge.
Feigenbaum,  M. J., 1983, “Universal Behavior in Non-Linear Systems,” Physica D, 7(1–3), pp. 16–39.
Libchaber,  A., Laroche,  C., and Fauve,  S., 1982, “Period Doubling Cascade in Mercury, a Quantitative Measurement,” J. Phys. (France), Lett., 43(7), pp. L211–L216.
Pulliam,  T. H., and Vastano,  J. A., 1993, “Transition to Choas in an Open Unforced 2-D Flow,” J. Comput. Phys., 105(1), pp. 133–149.
Thompson, J. M. T., and Steward, H. B., 1986, Nonlinear Dynamics and Chaos: Geometrical Methods for Engineers and Scientists, John Wiley and Sons, Chichester.
Arneodo,  A., Coullet,  P., Tresser,  C., Libchaber,  A., Maurer,  J., and Dhumieres,  D., 1983, “On the Observation of an Uncompleted Cascade in a Rayleigh-Benard Experiment,” Physica D, 6(3), pp. 385–392.
Yoo,  J. S., and Han,  S. M., 2000, “Transitions and Chaos in Natural Convection of a Fluid with Pr=0.1 in a Horizontal Annulus,” Fluid Dyn. Res., 27(4), pp. 231–245.
Pomeau,  Y., and Manneville,  P., 1980, “Intermittent Transition to Turbulence in Dissipative Dynamical-Systems,” Commun. Math. Phys., 74 pp. (2), pp. 189–197.

Figures

Grahic Jump Location
Schematic representation of: (a) a single slot jet impingement on a heated surface; and (b) a pair of planar air jets impingement on a heated surface
Grahic Jump Location
Pulsating pair jets A=1.0,ω=2,φ=3.14 rad for Re=533.3, (a) velocity time series, (b) frequency spectra of the velocity signal (a), (c) phase space reconstruction of (a) with time delay about one fifth of the period, (d) portion of (a), and (e) frequency spectra of the velocity signal (b)
Grahic Jump Location
Pulsating pair jets A=1.0,ω=2,φ=3.14 rad for Re=533.3: (a) maximum temperature; and (b) maximum temperature using a low pass filter (1-period)
Grahic Jump Location
(A) Maximum temperature of the plate, (B) Temperature of a control point as a function of Reynolds number: (–) Average temperature (A) and (B), (–○–) Maximum temperature, and ([[dotted_line]]) Minimum temperature
Grahic Jump Location
Dynamic behavior for the four states identified in Fig. 14: First column: Velocity time series; Second column: Frequency spectrum of the velocity; and Third column: two-dimensional time delay reconstruction of the phase space.
Grahic Jump Location
Maximum surface temperature as a function of time (nondimensional): (–▪–) Single jet Re=133.3, (-▪-) Single jet Re=266.6, (-⋅-▪-⋅-) Single jet Re=533.3, (–) Pair jet Re=66.6, (- -) Pair jet Re=133.3, and (-⋅-) Pair jet Re=266.6
Grahic Jump Location
Variation of the surface temperature as a function of the plate position: (a) single jet, (—) Re=133.3, (- -) Re=266.6, (-⋅-) Re=533.3; (b) pair jet, (–) Re=66.6, (- -) Re=133.3, (-⋅-) Re=266.6; (and variation of the velocity near the wall as a function of the plate position) (c) single jet, (–) Re=133.3, (- -) Re=266.6, (-⋅-) Re=533.3; and (d) pair jet, (–) Re=66.6, (- -) Re=133.3, (-⋅-) Re=266.6
Grahic Jump Location
Maximum surface temperature as a function of time (nondimensional): (–▪–) Steady single jet for Re=266.6, (–) Steady pair jet for Re=133.3, (–•–) Pulsating pair jet A=0.5,ω=2,φ=0 for Re=133.3, (–□–) Pulsating pair jet A=0.5,ω=2,φ=1 rad for Re=133.3, (–⋄–) Pulsating pair jet A=0.5,ω=2,φ=2 rad for Re=133.3, and (–○–) Pulsating pair jet A=0.5,ω=2,φ=3.14 rad for Re=133.3
Grahic Jump Location
Maximum surface temperature as a function of time (nondimensional): (–▪–) Steady single jet for Re=266.6, (–) Steady pair jets for Re=133.3, (–•–) Pulsating pair jets A=0.5,ω=1,φ=3.14 rad for Re=133.3, (–□–) Pulsating pair jets A=0.5,ω=2,φ=3.14 rad for Re=133.3, and (–⋄–) Pulsating pair jets A=0.5,ω=4,φ=3.14 rad for Re=133.3
Grahic Jump Location
Maximum surface temperature as function of time (nondimensional): (–▪–) Steady single jet for Re=266.6, (–) Steady pair jets for Re=133.3, (–•–) Pulsating single jets A=0.5,ω=1 for Re=133.3, (–□–) Pulsating single jets A=0.5,ω=2 for Re=133.3, and (–⋄–) Pulsating single jets A=0.5,ω=4 for Re=133.3
Grahic Jump Location
Maximum surface temperature as function of time (nondimensional): (–▪–) Steady single jet for Re=266.6, (–) Steady pair jets for Re=133.3, (–•–) Pulsating pair jets A=0.5,ω=2,φ=3.14 rad for Re=133.3, and (–⋄–) Pulsating pair jets A=1.0,ω=2,φ=3.14 rad for Re=133.3
Grahic Jump Location
Pulsating pair jets A=1.0,ω=2,φ=3.14 rad for Re=133.3: (a) velocity time series, (b) temperature time series, (c) frequency (–) of the velocity and (– –) temperature, and (d) two-dimensional time delay reconstruction of the phase space
Grahic Jump Location
Pulsating pair jets A=1.0,ω=2,φ=3.14 rad for Re=266.6: (a) velocity time series, (b) frequency of the velocity, and (c) two-dimensional time delay reconstruction of the phase space
Grahic Jump Location
Pulsating pair jets A=1.0,ω=2,φ=3.14 rad for Re=218.6: (a) velocity time series, (b) temperature time series, (c) frequency (–) of the velocity and (– –) temperature, and (d) two-dimensional time delay reconstruction of the phase space
Grahic Jump Location
Pulsating pair jets A=1.0,ω=2,φ=3.14 rad for Re=258.6, (a) velocity time series, (b) frequency spectrum of the velocity, (c) two-dimensional time delay reconstruction of the phase space n, and (d) focus of the two-dimensional time delay reconstruction of the phase space

Tables

Errata

Discussions

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related Journal Articles
Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In